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Summary

In this practicum session we will emphasize three different things you encounter in observational astrophysics.
In the first part Fourier Transforms and their use in astronomy. Secondly we we will see how it is possible to
detect a pulsar signal from a background dominated radiation field with use of the Fast Fourier Transform. The
last project emphasizes the Signal to Noise Ratio and how it is used in designing instruments.

1 Wave packets and Fourier

Transforms

1.1 Fourier Transforms

We derive an expression for the Fourier transform of
a spectral line.
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If we plot the wave packets and their Fourier
transforms for various standard deviations, we ob-
tain the following plots:

If the wave packet becomes smaller, its Fourier
transform gets wider and vice versa.

Figure 1: The wave packet and its Fourier transform for σω0
=

0.005

Figure 2: The wave packet and its Fourier transform for σω0
=

0.02
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Figure 3: The wave packet and its Fourier transform for σω0
=

0.05

Figure 4: The wave packet and its Fourier transform for σω0
=

0.2

1.2 Interference

Now we will consider two wave packets and let them
interfere. We use the same wave packets as before,
each time with a different time shift. We will become
destructive as well as constructive interference, de-
pending on the mutual time shifts, where tyhe wave
packets overlap.

Here are several plots:

Figure 5: Several wave packets interfering at different time

shifts.

Figure 6: Several wave packets interfering at different time

shifts.

It can easily be seen that interference only is pos-
sible on time scales of order of the interference time.
The fluctuations in the interference pattern are of
the same order of the pattern itself.

1.3 Monochromatic Waves

We can generalize the interference pattern to n wave
packets, to generate a so-called quasi-monochromatic
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waves. To illustrate this we use n = 400 and we
make plots of the interference patterns for different
standard deviations.

Figure 7: The interference pattern for a superposition of 400

waves and a standard deviation of 0.001 Hz

Figure 8: The interference pattern for a superposition of 400

waves and a standard deviation of 0.05 Hz

If we describe the patterns like E(t) =
E0(t) cos 2πνt + φ(t), where ν is the frequency of the
carrier wave, φ(t) a time-dependent phase angle and
E0(t) the slowly varying time dependent amplitude
modulation function. The typical time scale of the
latter is much higher than the coherence time.

If in an interference experiment the separation
between the pinhole is distorted by more than two
times the coherence length there will be no interfer-
ence.

Figure 9: The interference pattern for a superposition of 400

waves and a standard deviation of 0.01 Hz

1.4 Krypton-86

Finally we use the results obtained before on one of
the most coherent non-laser lines, 86Kr at 605.8 nm,
and of a He-Ne-laser line at 632.8 nm.

The width ∆λ of the orange Krypton line is
0.00055 nm, so the line frequency is 4.951014 Hz,
∆ν = 8.99108 Hz. The frequency stability, defined
as ν

∆ν
= 550727 and the coherence length is 33 cm.

For a helium-neon laser with a frequency stabilty
of 2 parts in 1010, the coherence length at λ = 632.8
nm is 3.164 km!

2 Pulsar Detection

2.1 Detecting the Signal

We use a list of simulated pulsar counts, with back-
ground. The pulsar counts are drawn from a single
Gaussian peak characterized by a known FWHM.
For given simulation set 1, we generate the times-
tamp sample composed of both background and pul-
sar counts. We convert this individual photon times-
tamps into a count rate array adopting a certain sam-
pling frequency in order to use the Fourier transform
concept.

If we make a time plot of the count rate versus
time, we obtain Figure 10. It is obvious that the
signal is not easily detected with the eye.

Using an IDL procedure we perform a discrete
Fourier transform of the count rate. Internally in this
procedure the average count rate is subtracted from
the actual count rate. The result is Fourier trans-
formed. The result of this transformation is a power
density spectrum versus signal frequency, which can
be seen in Figure 11. In this plot the signal is eas-
ily recognized. We determine the frequency of the
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Figure 10: The count rate versus time.

pulsed signal to be 5 Hz, as can be seen at the hori-
zontal axis.

Figure 11: The power density spectrum versus signal fre-

quency.

2.2 The Properties of the Signal

Now we have found the signal of the pulsar in a back-
ground dominated environment, we want to know the
properties of the signal. First a phase histogram of
the timestamp series is made (by pulse phase fold-
ing the series with the found frequency): Figure 12.
The result is a pulse profile of the pulsar atop of a
flat background distribution. The effective width, or
duty cycle, of the pulse is 0.4. That’s exactly the
FWHM of the simulated pulsar.

Figure 12: Phase histogram of the timestamp series.

2.3 Comparison with another Pulsar

Simulation

Another pulsar simulation is made. The difference
between the sets will appear from the plots. Exactly
the same plots are made of this example.

Figure 13: The count rate versus time of the second simulated

pulsar.

Again, in the signal (Figure 13) nothing is to be
seen. When we make the power spectrum (Figure 14)
we can see more than one peak. The explanation for
that is that the FWHM of the Gaussian is smaller
than in the first set. In order to obtain such a sig-
nal you need more higher harmonics in the Fourier
spectrum. Thats why there are clear peaks at two,
three and four times the signal frequency. If we made
the FWHM even smaller, more and more peaks will
appear in the Fourier spectrum.

In Figure 15 the phase histogram of this simu-
lated pulsar is plotted. From this plot it is clear that
the FWHM is indeed smaller (0.2 instead of 0.4)
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Figure 14: The power density spectrum versus signal fre-

quency of the second simulated pulsar.

Figure 15: Phase histogram of the timestamp series of the

second simulated pulsar.

2.4 The Effect of the Sampling Fre-

quency

In the simulations a sampling frequency of 100 Hz
was used. The found signal turned out to have a
frequency much lower than that. If the sampling
frequency was chosen smaller than the hypothetical
pulsar frequency we would have counted more than
one pulse in the time of one sample. The result would
be that in every bin there is at least one photon of
the source counted. The frequency cannot be deter-
mined.

3 Signal to Noise Ratio Depen-

dence on Background, Num-

ber of Pulsed Counts and

Duty Cycle

Now we have obtained the pulse phase distribution
of the signal we can study in more detail the de-
pendencies of the S/N-ratio on the pulsed signal
strength (the number of pulsed counts), background
and width of the pulse.

In our case the S/N-ratio ( the ratio of pulsed
excess counts and error in pulsed excess counts) can
be determined from:

S/N =
NP − (∆on/(1 − ∆on)) · NU

√

NP − (∆on/(1 − ∆on))2 · NU

(10)

NP represents the total number of counts in the
pulsed phase interval, while NU is the total number
of counts in the unpulsed interval. The width of the
pulsed interval is given by ∆on.

3.1 Pulsar Simulation

We generated a simulated set of pulse phases using
Npulsar = 500 pulsed counts, Nbg = 20000 back-
ground counts and a pulse FWHM of 0.1. A pulse
histogram of the pulsed signal is shown in Figure 16.
In this plot the FWHM of the signal is fixed, the
number of pulsed counts goes from 500 to 2000 in
steps of 250. The signal to noise ratio as a function
of input pulsed counts is plotted in Figure 17. It is
clear that this ratio decreases as a function of input
pulsed counts.

Now we let the number of pulsed counts as well
as the FWHM fixed and we let the number of
background counts vary from 20000, 45000, 80000,
125000, 180000, 245000 up to and including 320000.
The Phase histograms are plotted in Figure 18.

5



Figure 16: Phase histograms of a simulated pulsar with the

FWHM fixed and the number of pulsed counts increasing.

Figure 17: The signal to noise ratio as a function of input

pulsed counts.

Again the signal to noise ratio is plotted as a func-
tion of the number of background counts, as can be
seen in Figure 19.

Figure 18: Phase histograms with FWHM and pulsed counts

fixed, with increasing background counts.

Figure 19: The signal to noise ratio as a function of back-

ground counts.

Finally we put the number of pulsed counts and
the number of background counts fixed and let the
FWHM vary from 0.1 up to 0.3 in steps of 0.05. The
result can be seen in Figure 20. And also a plot of
the S/N-ratio dependence is made in Figure 21.

All the plots of the signal to noise ratio are means
of 100 simulations to make the resulting plot more
general. From these plots it is obvious that the signal
to noise ratio is getting higher (and hence better)
for a higher number of pulsed counts (linear). It
gets smaller when the number of background counts
is higher (square root). The S/N-ratio gets smaller
of the FWHM of the signal is smaller (more or less
linear).
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Figure 20: Phase histograms with background counts and

pulsed counts fixed, with increasing FWHM.

Figure 21: The signal to noise ratio as a function of FWHM

of the signal.

4 Dust in Distant Galaxies

4.1 General Cosmology

First we will describe some general theory concern-
ing cosmology. To start with: the universe expands.
The recession velocity is proportional to the distance,
according to Hubble’s Law: v = H0d, with H0 Hub-
ble’s Constant, which we will take 75 km s−1 Mpc−1

in this session. This expansion gives rise to a small
redshift of the wavelengths in the galaxy light, ac-
cording to ∆λ/λ = v/c, the Doppler effect. Hubble’s
Law implies that at certain distances the velocity of
the object exceeds the speed of light. This confusion
is solved by realizing that the Doppler effects ’builds’
during the travel of the light. While the light travels
towards us, space expands and that’s what causes
the redshift. The relation between wavelength shift
and redshift is:

z ≡
λ0 − λe

λe

(11)

When calculating flux from luminosity and dis-
tance we can no longer use

F = L/(4πd2) (12)

, but instead we define a ’luminosity distance’ dL,
such that

F = L/(4πd2
L) (13)

At small redshifts, we have dL ≈ cz/H0. At large
redshift the relationship gets nonlinear in z. For now
we will use a redshift of z = 1. For that distances we
have

dL = 1.2
( c

H0

)

(14)

Similarly, angular diameter δθ and linear size l are
related by

δθ = l/d =
H0l

cz
(15)

At z = 1 we define the ’angular diameter distance’
to be

dθ = 0.3
( c

H0

)

(16)

4.2 Infrared Dust Emission

We will first consider the spectral distribution and
flux of the infrared dust emission. Let’s assume
a galaxy with an intrinsic bolometric luminosity of
1011L⊙ at a redshift of z = 1. The spectrum of
the luminous IRAS galaxies can well be described
by blackbodies, with an implied dust temperature of
50 - 100 K. We will take TD = 60 K as a charac-
teristic value. According to the blackbody distribu-
tion, from Wiens displacement law(λmaxT = kW ),
the peak wavelength of the spectrum in the galaxies
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own rest frame is λmax =48,3 µm. The redshifted
spectrum still looks like a blackbody spectrum, and
it can be described with a temperature defined by

T
′

D = TD/(1 + z) (17)

because,

(1 + z) =
λ0

λe

=
TD

T
′

D

(18)

The redshifted peak, therefore, has its peak at
λmax = 96, 6 µm.

For the assumed intrinsic luminosity of 1011L⊙,
we calculate the flux on earth, again assuming that
the galaxy is at z = 1. The flux is: F = 1.54 ·
10−27 W m−2. A blacbody fairly strongly peaked
around λmax, so we can make a rough estimate of
the monochromatic energy flux density, Fλ, by using
Fλ ≈ F/λmax. In our case Fλ = 1.59 · 10−29 W m−2

µm−1.

4.3 Detection of LIG’s

To observe Luminous Infrared Galaxies (LIG’s) we
need to get very high in or above the Earths atmo-
sphere. This is because the atmosphere absorbs all
radiation. If we are high enough, our instrument will
be able to detect it. Of course there will be a lot of
noise. A few sources of noise and background will
be the temperature radiation of the instrument it-
self, the temperature radiation of the vehicle which
takes it that high, the temperature radiation of the
surrounding and other sources of infrared radiation
in the universe, in the line of sight.

If we ignore the instrument contributions and will
just be aware of the sky background. We will work
out the design parameters for our instrument, as-
suming we try to detect a 1011L⊙ LIG at z = 1 that
is limited by the sky background. There is a quan-
tity that describes how well (if at all) you can detect
a source of radiation, and it is called the Signal to
Noise Ratio (SNR). It is defined as:

S/N =
Nsource

√

Nsource + Nsky

≈
Nsource
√

Nsky

(19)

The last approximation can be made because the sky
background is stronger than the signal. Some equa-
tions we need:

∆Ω = π(δθ)2 +
( λ

D

)2

(20)

Nsky =
Isky · π(D/2)2 · ∆Ω · Texposure · ∆λ

(h · c)/λ
(21)

Nsource =
1

2
(S/N)2 +

√

(S/N)4 + 4(S/N)2 · Nsky

(22)
Using expressions given above we calculate the

apparent size of the galaxy on the sky if its real di-
ameter is 20 kpc: δθ = 3.4 arcseconds. The radius
projected is therefore δθ = 1,” 7.

We are now able to write down an expression for
the faintest flux we can still detect above the sky
background:

Fmin =
Nsource

π(D/2)2 · Texp · ∆λ
(23)

Now it turns out to be convenient to make a plot
of the limiting flux curve. We choose our telescope
diameter as the independent variable, and we plot
the limiting flux as a function of it. The plot can be
seen in Figure 22.

Figure 22: The limiting flux as a function of telescope diame-

ter.

From this plot we conclude that our telescope
must be at least approximately 2.5 meters to detect
our galaxy.
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