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Abstract

The work described in this thesis can be divided into two divisions, an investi-
gation of the radii of star clusters in M51 and an investigation of the luminosity
function of the population of clusters, or of subpopulations.

Reliable radius determinations are hard to make. The constraints on the data
are severly reducing the sample, when investigating radii. Radii are determined
by fitting a cluster profile convolved with the PSF of the optics, but this method
is sensitive for contamination and highly varying backgrounds. The resulting
radius distribution seems to be peaked at a value of around 3 pc, having a
power law behaviour towards larger radii (similar to what is found in other
studies). Any relation between mean radius and postion in the galactic disk is
not found, implying that the comparatively young cluster population is not in
tidal equilibrium with their host galaxy (old globular clusters in our Milky Way
halo are much closer to this equilibrium).

The mass of the most massive cluster in a galaxy usually is determined by
the cluster initial mass function (CIMF) and the star cluster formation rate
(via the total number of clusters). It is becoming clear, though, that there might
exist a fundamental upper cluster mass limit, which in some galaxies (among
which M51) is smaller than the limit implied by statistics. I will show that the
interacting galaxy M51 shows the signs of an upper mass limit, which varies with
position in the disk. By comparing observed and simulated luminosity functions
(LFs) of cluster populations I can infer the underlying CIMF. A physical upper
mass limit for star clusters will appear as a bend in the LF, if the star cluster
formation rate is high enough to sample the full range of cluster masses. The
location of the bend in the LF provides information about the value of the upper
mass limit. Using the LF of the star cluster population of M51 we show that the
cluster initial mass function is likely to be truncated at the high mass end. We
also show that the maximum possible cluster mass in the central regions of the
galaxy is higher than in the outskirts. Regions of higher background intensity
also tend to form more massive clusters.

Slopes of the luminosity function indicate a more efficient cluster disruption
process in the inner parts of the galaxy than in the outer parts, and more efficient
disruption in high background regions than in regions with lower background
intensity.

3



4



Contents

1 Introduction 7

1.1 Star formation in clusters . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Stellar population tracers . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Cluster evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Clusters in interaction with their environment . . . . . . . . . . . 10
1.5 Evolution and cluster parameters . . . . . . . . . . . . . . . . . . 11
1.6 Goal of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Star clusters and their evolution 13

2.1 Dynamical evolution . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Isolated star clusters . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Clusters in a tidal field . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Clusters in interaction . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Visibilty of dynamical state in the radius of a cluster . . . 16

2.2 The photometric properties of clusters . . . . . . . . . . . . . . . 17
2.2.1 Photometric evolution of a cluster . . . . . . . . . . . . . 17
2.2.2 Luminosity functions . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 An upper mass limit for clusters and the LF . . . . . . . 21

3 Observations of M51 25

3.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The M51 system . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Deriving cluster parameters 29

4.1 Source selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Radius determinations . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 The Point Spread Function . . . . . . . . . . . . . . . . . 30
4.2.2 Analytic cluster profiles . . . . . . . . . . . . . . . . . . . 30
4.2.3 Cluster fits and precision . . . . . . . . . . . . . . . . . . 30

4.3 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Aperture corrections . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Extinction corrections . . . . . . . . . . . . . . . . . . . . 31

4.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Background regions . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



6 CONTENTS

5 The distribution of M51 cluster radii 35

5.1 Radius distribution function . . . . . . . . . . . . . . . . . . . . . 35
5.2 Radii throughout the disk . . . . . . . . . . . . . . . . . . . . . . 36

6 Luminosity function 39

6.1 Relations between LF parameters and location . . . . . . . . . . 39
6.1.1 Luminosity functions in different environments . . . . . . 40

7 Implications and speculations 47

7.1 Cluster sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Maximum cluster mass, star formation and cluster disruption . . 48

7.2.1 Mass limits at various locations . . . . . . . . . . . . . . . 48
7.2.2 Cluster disruption at different sites . . . . . . . . . . . . . 49

8 Outlook 51

A Power law distribution functions 53

A.1 Distribution functions . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Random sampling a distribution function . . . . . . . . . . . . . 54
A.3 Fitting a distribution function . . . . . . . . . . . . . . . . . . . . 55

A.3.1 Creating an array of masses . . . . . . . . . . . . . . . . . 55
A.3.2 Fitting a power law on binned data . . . . . . . . . . . . . 56
A.3.3 Fitting methods without binning . . . . . . . . . . . . . . 60
A.3.4 Comparing the results . . . . . . . . . . . . . . . . . . . . 63

A.4 Double power law distribution functions . . . . . . . . . . . . . . 65

B Summary for non-astronomers 67

B.1 Star clusters in different galaxies . . . . . . . . . . . . . . . . . . 67
B.1.1 Star clusters . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.1.2 A diversity of galaxies . . . . . . . . . . . . . . . . . . . . 68
B.1.3 Galactic vs. extragalactic cluster research . . . . . . . . . 69

B.2 Evolution of star clusters . . . . . . . . . . . . . . . . . . . . . . 71
B.2.1 Cluster dynamics . . . . . . . . . . . . . . . . . . . . . . . 71
B.2.2 What do we want to know? . . . . . . . . . . . . . . . . . 73

B.3 Radii of star clusters in M51 . . . . . . . . . . . . . . . . . . . . 74
B.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.4 Luminosities of star clusters in M51 . . . . . . . . . . . . . . . . 74
B.4.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.4.3 Maximum mass at different loci . . . . . . . . . . . . . . . 75
B.4.4 Cluster disruption . . . . . . . . . . . . . . . . . . . . . . 75

B.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

The two main constituents of the universe are stars and gas (although mostly
in the form of plasma). They do not exist separately from each other, ignoring
their environment: they are continuously interacting. Stars are forming from
gas and during their evolution they return chemically enriched gas and dust in
the interstellar medium through winds and the explosions that mark the end
of their lifes. From this enriched gas new generations of stars might form, with
higher abundances of heavy elements.

1.1 Star formation in clusters

It is generally thought that the majority of stars (if not all of them) is born in
star clusters (groups of several tens of stars to several million), see e.g. Larsen
(2004). So, understanding the process of star formation is closely linked to
understanding cluster formation and an explanation of the population of stars
in a galaxy depends on the understanding of the birth and subsequent evolution
of star clusters.

When one looks up at the sky on a clear night one sees just a few clusters and
numerous loose stars, so-called ‘field stars’. A simple, and correct, conclusion is
that most stars do not live in clusters, but rather as single stars (except for the
detail that most stars live in binary (or multiple) systems). This indicates that
clusters are not very stable objects; if all stars are born in clusters, but most off
them live alone, then most clusters must disrupt on rather short timescales.

1.2 Stellar population tracers

Star clusters consist of stars that are formed approximately coeval with all the
same original composition. As a consequence of their compact nature, which
makes them visible up to large distances, they are good tracers of the star
formation history of their host galaxies. In contrast to the integrated light of
a whole galaxy (which consists of an unknown mixture of stellar populations
of different ages and metallicities), the integrated light of a single cluster gives,
in a very simple way, information about the stellar population of the galaxy
by comparison with simple stellar population models (SSP models), like the
GALEV models (Schulz et al., 2002; Anders & Fritze-v. Alvensleben, 2003).
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8 CHAPTER 1. INTRODUCTION

Figure 1.1:
In a halo around our Milky Way Galaxy, some 150 globular clusters like this (M22) are

orbiting the galaxy. These objects usually are as old as the galaxy (± 12 billion years)

and show that some clusters might be able to survive for a long time. Image from

http://crux.astr.ua.edu/gifimages/m22.gif

These SSP models and comparisons to clusters are on themselves important
tests for stellar evolution models.

1.3 Cluster evolution

Besides their important implications for stellar as well as galactic evolution,
star clusters are very interesting in their own right as well. Besides the already
mentioned formation of clusters, also their dynamical evolution has many inter-
esting aspects. Three very good books on this subject are Heggie & Hut (2003),
Binney & Tremaine (1987) and Spitzer (1987).

The main interaction stars in a cluster have with each other is through grav-
ity. Because of the nature of gravity a cluster is an intrinsically unstable object.
A cluster in isolation will lose stars (mainly of low mass) by slow evaporation



1.3. CLUSTER EVOLUTION 9

Figure 1.2:
A typical example of a young cluster in our Milky Way: The Pleiades (M45). The gas that is

left over after the formation of the stars is still present and visible. Removal of this gas might

mark the end of the clusters lifetime. Image from http://fusionanomaly.net/pleiades.jpg.

(the high velocity tail of the their Maxwellian velocity distribution goes beyond
the escape velocity) and by two- or more body interactions (giving the lower
mass object a kick, such that it might escape; the higher mass counterpart will
sink to the center of the cluster), see e.g. Spitzer (1987); Ostriker et al. (1972).

Things get even more complicated if the star formation was not 100% effec-
tive and gas is left over in the clusters, for example like in the Pleiades (Fig.
1.2). Removal of this gas by the stellar winds of masssive stars, or even by
their supernova ejecta, makes the potential well of the cluster considerably less
deep, resulting in a less bound cluster. See also Goodwin (1997); Geyer & Burk-
ert (2001); Boily & Kroupa (2003); Fellhauer & Kroupa (2005); Melioli & de
Gouveia dal Pino (2006).

This residual gas removal is the main cause of the ‘infant mortality’ of clus-
ters. Most clusters do not survive the first 10 Myr of dynamical evolution (Lada
& Lada (1991); Tremonti et al. (2001); Fall et al. (2005); Bastian et al. (2005b);
Lamers et al. (2006) and references in the previous paragraph); they rather
disrupt to form the galactic field star population.
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Figure 1.3:
Pal 5 is a good example of a cluster that is torn apart by the tidal field of our galaxy. One

can clearly see two ‘streams’ of stars moving away on both sides of the cluster. The clusters

orbit is indicated by the arrow. Stars closer to the galactic center are moving ahead, stars in

the back of the cluster are lacking behind.

1.4 Clusters in interaction with their environ-

ment

Real clusters do not live in isolation. In the first place it feels the tidal field
of its host galaxy. This makes sure that the cluster cannot grow as large as it
would like, but it rather is tidally truncated. Stars outside its so-called tidal
radius will be torn away by the tidal field of the galaxy, bringing these stars in
another ‘keplerian’ orbit around the center of the galaxy, where they will have
a different orbital period, cuasing the stars to lag behind or run in front of the
cluster, moving further and further away. This can very clearly be seen in the
case of Pal 5, Fig. 1.3. See Baumgardt & Makino (2003) for simulations of star
clusters in tidal fields and Lamers et al. (2005) for an analytic description of the
disruption of star clusters in tidal fields.

A second very important environmental aspect in cluster evolution is the
interaction with other massive objects in the galaxy, like other clusters, Giant
Molecular Clouds (GMCs) or the total gravitational well built up by all the
material in a spiral arm. Everytime a cluster goes through a potential well its
dynamics are drastically altered (Wielen (1991)). Moving towards the deepest
part of the well the clusters is stretched, while it will get squeezed deep within
it. Moving back out stretches the cluster again and a violent (close) encounter
with a GMC or other cluster can strip a cluster for as much as 25% of its stars
(Gieles et al., 2006d)!
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1.5 Evolution and cluster parameters

We would like to quantify this incredibly complicated process of dynamical
cluster evolution and eventually even come up with a complete prediction of the
evolution of a cluster, once the initial parameters are known. Of course we are
still very far from a definitive model, but important steps are already made. In
particular the mass dependence of the disruption process is investigated in detail
(theoretical, numericall as well as observational), see e.g. Baumgardt & Makino
(2003); Boutloukos & Lamers (2003); Lamers et al. (2005). Dependencies on
radius and the effect of the evolution on the luminosity function of the cluster
population have had considerable less attention. These quantities will be the
main topic of the present thesis.

1.6 Goal of research

In this research I will use a newly obtained set of observation of the interacting,
face on, spiral galaxy M51, made with the Hubble Space Telescope, equipped
with the Advanced Camera for Surveys. Because of the enormous field of view
of the observations, together with the deepness and very high resolution we are
able to search for relations between cluster parameters and their positions in the
disk of M51. The observations allow us for the first time to study subpopulations
within a galaxy without the loss of trustworthy statistics. I will focus on two
main topics:

1. Radii: Is there a relation between the radius (distribution) of cluster(s)
and their position in the disk (e.g. as a function of galactocentric distance
or whether or not the cluster is in a spiral arm). This study will be
published by Scheepmaker et al. (2006).

2. Luminosities: Is there a relation between the luminosity function of a
cluster population and their position in the galaxy? This study will be
published by Haas et al. (2006).

Of course, for both cases also explanations will be discussed.

This thesis is structured as follows. First, in Chapter 2 I will give a brief
overview of the dynamics of star clusters (to create a framework for the obser-
vations) and I will describe photometric properties of a cluster (population).
In Chapter 3 I will describe the data used in the investigation. Methods to
obtain the results are described and discussed in Chapter 4, while the results
themselves are given in Chapter 5 and 6. A concluding summary is given in the
final Chapter (7).

In Appendix A I discuss statistical issues regarding the fitting of distribution
functions in general, and power law distribution functions in special. Appendix
B is reserved for a summary for non-astronomers.
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Chapter 2

Star clusters and their

evolution

This Chapter is devoted to giving a little theoretical background, in order to
stand on firm grounds when analyzing the observations. Because of the topic of
the thesis I will focus my attention to the radii and luminosities of clusters and
what we will hope to be able to see.

2.1 Dynamical evolution

Studies to the dynamics of so-called ‘N-body systems’ go back as far as Einstein
(1921). Pioneering in cluster dynamics he wrote a paper on M13, which was
his only contact with clusters throughout his life. Although the conclusion he
draws still holds (the non-luminous mass in the cluster contributes no higher
order of magnitude to the cluster mass than does the luminous mass), con-
siderable improvements in the field of cluster research have been made in due
time. Whereas the earlier studies were oriented either observationally or ana-
lytically, with the development of computers the study of numerical dynamics
became an important field of research as well. Special purpose hardware, like
the GRAPE computers (Makino & Funato, 1993), make numerical integration
of the dynamics of a star cluster even faster.

I will not treat the evolution of star clusters extensively, as that was not
part of my project. Three very good books on cluster evolution and dynamics
are Heggie & Hut (2003), Binney & Tremaine (1987) and Spitzer (1987).

In this section I will only summarize those dynamical aspects which have a
visible influence or dependence on the radius.

2.1.1 Isolated star clusters

Although it is not really a relevant case for this study, isolated star clusters are
a useful starting point to describe the evolution of a star cluster. The processes
going on in an isolated cluster are after all not removed when the cluster interacts
with its environment. Therefore I will briefly summarize it here; for details I
refer to the beforementioned books.

13



14 CHAPTER 2. STAR CLUSTERS AND THEIR EVOLUTION

For star cluster evolution, two time scales are particularly important: the
crossing time (basically the size of the system divided by the typical stellar
velocity) and the two-body relaxation time (the time in which the cumulative
effect of two-body interactions can alter the stellar orbits significantly). See
Henon (1973) for intuitive derivations.

The precollapse phase

The evolution of an isolated cluster is the slowest possible evolution sequence
a cluster can undergo. Every process added to the evolution will speed up the
evolution (usually leading to destruction). The first, long-lasting phase, is called
the precollapse phase, because core collapse is what it eventually should lead
to.

Two- or more-body interactions are of course a common phenomenon in
dense stellar systems such as clusters. Whenever bodies interact, they tend to
exchange energy in such a way that their energies get more equal (equipartition
of energy). This comes down to the fact that that massive stars, on average,
slow down and fall towards the center, whereas the less massive counterpart in
the interaction will speed up to populate the outer regions of the cluster.

The interactions in a cluster will tend twoards a totally ‘relaxed’ state, one in
which the velocity distribution is Maxwellian. Whenever stars get velocities in
the fast tail of this distribution, they can be lost because their velocity exceeds
the escape velocity of the clusters potential (another way of saying this is that
the total energy of the star, potential (negative) plus kinetic, is positive). This
evaporation of clusters make their potential well less deep, and therefore the
escape velocity drops. If it were not for other processes, the cluster would
disperse into field stars, leaving behind a small, very dense core.

Postcollapse evolution

Because of two-body interactions and the loss of stars from the outside the core
gets denser and denser. Eventually this could lead to so-called core collapse. The
formation of binaries, however, saves the cluster from such a disaster. Three-
body interactions, in which one star takes enough energy to leave the remaining
two in a bound state, or very close two-body interactions, in which by tidal
effects the stars are slowed down, are able to form binaries. This formation of
binaries releases energy and therefore the core starts to expand again. This will
make sure that the core of the cluster survives the collapse.

The final fate of an isolated system of point masses

The processes described above do not take into account that clusters in reality
consist of stars (except for the formation of a binary from tidal capture in a
two-body interaction), rather than of point masses. In the, much simpler, case
of a system of point masses the final state will be one of total dispersion. The
stars will occupy an ever increasing volume, becoming less and less bound to
what was once called the cluster.
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2.1.2 Clusters in a tidal field

In reality a cluster is not on its own in the universe. Usually clusters belong
to a galaxy, and are therefore influenced by their tidal field. Depending on the
orbit of the cluster around the galactic center (circular or eccentric), the tidal
field the cluster experiences can change strongly with time.

Using the tidal field of a galaxy it is not too hard to define a tidal radius,
within which stars are bound to the cluster. Outside this radius, stars will
generally be torn away from the cluster by the galaxy, in extreme cases leading
to tidal tails on both side of the cluster like seen in Pal 5 (Fig. 1.3). Stars that
are too close to the galactic center will be unbound from the cluster, reside in
a closer Kepler orbit and therefore get a higher velocity and run ahead of the
clusters. Stars that are too far of at the back end of the cluster will alse be torn
away, lagging behind because of their lower Keplerian velocity. The tidal radius
of a cluster with mass M at a galactocentric distance Dgal, with a Keplerian
(circular) velocity V is given by

rt =
(GM

2V 2

)1/3

· D
2/3

gal (2.1)

Where G is the newtonian gravitational constant. If star clusters are in tidal
equilibrium with their host galaxy it is to be expected that the radius of a cluster
(or the mean/preferred radius of a cluster population) scales (with large scatter
due to a scatter in mass) with the galactocentric radius.

The fact that star clusters are indeed in tidal equilibrium is used in many N-
body simulations, like e.g. Baumgardt & Makino (2003). Cases like Pal 5 show
that clusters sometimes are indeed as large as their tidal radius, but it remains
to be seen whether this holds for any cluster, regardless of their position in the
galaxy. Further out in the galaxy, tidal radii can get values of several tens of
parsecs, which is unusually large for real clusters.

2.1.3 Clusters in interaction

Clusters do not ‘live alone’ in their host galaxy. They move in their orbits
around the center together with many other clusters and Giant Molecular Clouds
(GMCs). Clusters gravitationally interact with these other massive constituents.
Also the movement through spiral arms (for disk clusters) or the movement
through the disk (for halo clusters) strongly affects the dynamical state of a
stellar system.

Disk and arm shocking

For this very concise summary I do not want to make a difference between shock-
ing by a disk for halo clusters and shocking by a spiral arm for disk clusters.
In both cases the star cluster moves through a region with a stronger gravita-
tional potential due to a higher mass density. Whenever in this section ‘arm’ is
mentioned, the same will hold for a disk.

Coming in the vicinity of the arm, the closest side of the cluster (as seen
from the arm) will notice the effects of the potential well first. Stars at that side
of the cluster will therefore be accelerated first and the cluster will be stretched.
Inside the spiral arm, the effect will inverse: whereas the back end of the cluster
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still comes in at high speed (from the original acceleration) the front end stars
are decelerated when climbing out if the potential well again. This squeezes the
cluster in the same direction as it was originally stretched. When receding away
from the spiral arm at the other end the cluster comes back in the old average
galaxy potential. In the mean time, however, it could have lost a considerable
amount of stars due to the stretching and squeezing (Wielen, 1991). A recent
study to the effect of spiral arms on the dynamics of a cluster is done by Gieles
et al. (2006a).

Encounters with other massive objects

Also the difference between encounters with other clusters and GMCs will be put
equal here. The theory of cluster evolution under the influence of gravitational
shocks is thoroughly discussed in Spitzer & Chevalier (1973).

Interactions with other massive objects, through their mutual attraction
results in so-called ‘heating’ of the clusters. All stars get an acceleration in the
direction of the other massive object. For all different stars in the cluster this
is under a different angle with their original orbit around the cluster center.
Continuing their orbit this therefore results in an increase in random velocities,
making the cluster expand and becoming less bound. Very severe encounters
can destroy a significant part of a cluster, as described by ?.

2.1.4 Visibilty of dynamical state in the radius of a cluster

If one has a large sample of clusters at hand of which the determined (projected
half light-) radii are reliable, we are able to see how well real clusters are de-
scribed by numerical models. Of course it is not possible to follow the dynamical
interaction of a single cluster in time, for the dynamical time scales are too long.
We can, however, look for statistical correlations between cluster radii and their
position with respect to their host galaxy or neighbouring clusters or GMCs.

If for example the majority of clusters is in tidal equilibrium with the galaxy,
and the distribution of cluster radii has a certain peak, then it can be expected
that this peak lies at larger radii for larger galactocentric distances (assuming
that there indeed is no mass radius relation, like found by Bastian et al. (2005b)).
If, on the other hand, the clusters are not at all confined by the tidal radius,
but rather are much smaller, one does not expect a relation between preferred
radius (peak of the distribution) and galactocentric distance.

The same reasoning holds for radius distributions in-/outside spiral arms
and close to, or far from, massive objects.



2.2. THE PHOTOMETRIC PROPERTIES OF CLUSTERS 17

Figure 2.1:
The photometric evolution of a star cluster with a Salpeter IMF at the indicated metallicities.

Different masses will only vertically shift the plots. Dynamical evolution is not taken into

account (no loss of stars). The cluster fades due to stellar evolution only. Taken from Schulz

et al. (2002).

2.2 The photometric properties of clusters

Besides the radius of a cluster, which will turn out to be hard to determine
with great accuracy, we can investigate the photometric properties of a star
cluster population in order to obtain results regarding their age, mass and/or
extinction. This comes along with several uncertainties as described by de Grijs
et al. (2005).

Extragalactic star cluster are too small to resolve their constituents stars
(except, maybe, for some bright O or B stars). We therefore see the cluster as
a (near) point source having a spectral energy distribution (SED) that consists
of the sum of the SEDs of all its stars.

2.2.1 Photometric evolution of a cluster

Cluster are so-called ‘simple stellar populations (SSPs)’, meaning that they con-
sist of stars with all the same age and the same original composition. Whereas
ages and metallicity might differ slightly in a cluster, this generally is a very
good approximation (except for exotic objects like Ω Cen, having three recog-
nizable populations and is probably the result of the merger of several smaller
clusters, see Sollima et al. (2005) and references therein).
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Figure 2.2:
The color evolution in Johnson B − V for clusters of different metallicities, with a Salpeter

IMF. Note that the color of a cluster does not depend on its mass. Dynamical evolution is not

taken into account (no loss of stars), this is the result of stellar evolution only. Taken from

Schulz et al. (2002).

Modelling photometry of star clusters can be done using a library of stel-
lar spectra (either calculated from stellar evolution models or observationally
obtained) of different stellar masses and metallicties. Well known examples of
SSP models are the GALEV models (Schulz et al., 2002; Anders & Fritze-v. Al-
vensleben, 2003), which make use of the Padova evolutionary tracks (Bertelli
et al., 1994; Girardi et al., 2000). These SSP models can give, for example, the
time evolution of the absolute magnitude in a certain passband, or the color, as
shown in Figs. 2.1 and 2.2. Of course this is dependent on the metallicity as well
as the stellar IMF. These SSP models in general do not take into account the
dynamical evolution of a cluster. All stars remain in the cluster (although they
end up as dark remnant, contributing hardly to the photometry of the cluster).
In order to model cluster photometry including dynamical evolution one has
to jump in every time step to a star cluster of lower mass (just shifting the
photometric evolution line to higher magnitudes) and possibly another stellar
mass function (if you want to take into account that clusters preferentially loose
low mass stars).

Determination of star cluster properties from photometry

If one only has access to photometry in several broad passbands, obtaining
detailed information about a star cluster (like its mass, age, metallicity and
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Figure 2.3:
Log(age/yr) plotted against log(mass/M�) for the cluster population of the LMC, according

to Hunter et al. (2003). The detection limit goes to higher masses for older clusters because

clusters fade as they age. The shown dotted line is the expected increase of the maximum

cluster mass at a certain age due to the size of sample effect (for a cluster population with

constant formation rate and power law mass function with slope -2). Plot taken from Gieles

et al. (2006b).

extinction) is hard. The main reason is a degeneracy: stellar evolution makes
a cluster redder, but so does extinction and even a higher metallicity will work
in the same way. It therefore is important to cover a large part of the SED,
in order to obtain this information, like described in e.g. Bik et al. (2003); de
Grijs et al. (2003a,b,c).

Our dataset will only contain B, V , I and Hα. This is not enough to obtain
accurate masses, extinctions, ages and metallicities. We will have to use different
techniques here and rather study the population as a whole, without taking care
of all clusters separately.

2.2.2 Luminosity functions

A very useful tool in the study of star cluster populations is their luminosity
function (LF). The LF is built up from clusters of all different ages, masses,
metallicities and so on.

As an example of the use of a LF I will shortly explain the models described in
Gieles et al. (2006b), using cluster data of the LMC from Hunter et al. (2003). In
Fig. 2.3 the age is plotted against mass (both logarithmically). If all the age bins
are equally sized in logarithmic space, then bins for older clusters should contain
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Figure 2.4:
The same clusters as in Fig. 2.3, but now with the absolute visual magnitude on the vertical

axis. The detection limit now of course stays horizontally. The upper dashed line is the

expected absolute magnitude of the most massive cluster, according to the size of sample

effect. The solid line is the the evolutionary track of the most massive cluster in the first bin.

Plot taken from Gieles et al. (2006b).

more clusters, because they correspond to a larger time interval. If the mass of a
newly born cluster in the process of cluster formation is determined by statistics
(masses according to a power law mass function N(M)dM ∝ M−βdM), then
the mass of the most massive cluster is determined by the size of the sample
and therefore going up in Fig. 2.3.

If we now plot the absolute magnitude of these clusters (which is a function
of mass, age and metallicity) instead of the mass we obtain Fig. 2.4. Here we
can see that the size of sample effect and the fading of clusters due to stellar
evolution makes sure that the maximum luminosity of star clusters is more or
less constant (the growing size of sample, and therefore mass of the most massive
cluster, and the fading of clusters due to stellar evolution almost cancel each
other out). This would also imply that the maximum cluster luminosity in a
galaxy scales with the number of clusters in the galaxy and this is indeed what
is found by Whitmore (2003) and Larsen (2002).

Obtaining a LF of the total star cluster population of a galaxy now, is
nothing else than integrating this figure (2.4) in the horizontal direction, to see
how many clusters there are in each magnitude bin. The fact that fading and
the size of sample effect cancel each other out is the reason that the slope of the
LF represents the slope of the cluster initial mass function (although they are
not exactly the same).
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An important conclusion is that exact measurements of cluster masses and
ages are not required if one wants information about the CIMF. This is the rea-
son several authors intensively investigated LFs of cluster populations in differ-
ent galaxies and different environments. They all find a power law distribution
function:

N(L)dL ∝ L−αdL (2.2)

with the exponent (α) between 1.8 and 2.4, see e.g. Larsen (2002); de Grijs
et al. (2003a). This suggests that in most galaxies the CIMF will also be ap-
proximately a power law with an exponent of around -2.

2.2.3 An upper mass limit for clusters and the LF

It has to be noted that the power law LFs are only found for galaxies with young
cluster populations. Old cluster populations (like the globular cluster population
in our own Milky Way Galaxy) usually show log-normal distribution functions
of their luminosities (Harris, 2001; Richtler, 2003). Nevertheless, these clusters
also have a log-normal distribution of masses, so again the shape of the LF
resembles the shape of the mass function.

In only three galaxies the LF of the star clusters is found to be better de-
scribed by a double power law, i.e. two distinct parts, both described by a
power law, which are seperated by a bend at certain absolute magnitude, which
differs from galaxy to galaxy. Whitmore et al. (1999) found for the “Antennae”
(NGC 4038/4039) a bend at MV ' −10, with on the faint side a shallower slope
(∼ −2) than on the bright side (∼ −2.7). For M51, Bastian et al. (2005b) found
hints for a double power law, which were confirmed by Gieles et al. (2006c). The
slopes on both sides are similar to the slopes found by Whitmore et al. (1999),
but the bend occurs about 1.6 magnitude fainter. In Gieles et al. (2006b) it is
shown that NGC 6946 is also better fit with a double power law, with parame-
ters comparable to M51. Note that the slopes at the faint end of the LF for all
these galaxies are similar to the slopes found for populations with a single power
law distribution.

Whereas the bend in the LF of the “Antennae” was interpreted as a bend
in the mass function by Whitmore et al. (1999), Gieles et al. (2006b) have
shown with analytic cluster population models that such a bend can occur if
the maximum possible cluster mass is not longer determined by the size of
sample effect (as is the case for e.g. the LMC and SMC (Hunter et al., 2003),
and is argued to be generally true by Weidner et al. (2004), who claim that
the maximum cluster mass is a function of the star formation rate only), but
that there rather exists a physical upper mass limit for star clusters. All the
details of the explanation can be found in Gieles et al. (2006b), but I will shortly
summarize the main features here. The model also corrects for dynamical effects,
but I will leave that out of the discussion here, to maintain simplicity,

Let us assume that there exists a certain upper mass limit (or an exponential
cut-off at the high mass end), see also Fig. 2.5. We again make a plot like
Fig. 2.4, now analytically filled with clusters, with masses randomly sampled
from a power law distribution function. If the star formation rate is high enough
to sample just the whole range of possible cluster masses (i.e. the maximum
mass in the youngest age bin due to the size of sample effect is equal to the
physical upper mass limit), then the first age bin is precisely filled. The rest of
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Figure 2.5:
The construction of a LF of a cluster population with an upper limit for the cluster mass. In

the righthand panel you see a model for the plot as Fig. 2.4, with a truncation at the high

mass end. The solid line now gives the maximum possible cluster luminosity per age bin, as

the most massive cluster fades. Integration along lines of equal luminosity again gives the LF.

For the dark shaded region, the slope is not different from before (although there are more

clusters, if the cluster formation rate does not change). From the locatiopn of the oldest most

massive cluster along the LF on towards the brighter end the LF will become steeper than

without mass truncation. Plot taken from Gieles et al. (2006b).

the age bins should contain more clusters due to the larger sizes of the bins, but
the mass of the most massive cluster cannot be more massive than the physical
upper limit. This means that there are indeed more clusters, but that the solid
line in Fig. 2.4 can be used here as describing the photometric evolution of the
most massive (and therefore most luminous) cluster per age bin.

If, again, the LF is created by integrating horizontally, one can easily see that
in the dark shaded region the situation is like the older situation: the shape of
the LF is the same; the fact that there are more clusters with those luminosities
(the total number is determined by the formation rate, and the distribution
function cannot be sampled due to the physical upper limit, so there are more
clusters with lower luminosities) does not change the shape of the LF, because
a power law is scale free. Above this region, though, there are too little objects
(an effect that is becoming stronger for higher luminosities), as indicated by the
light shaded region. The integration therefore will result in an LF which is, on
the faint side of the bend, the same as it would be without upper mass limit,
but on the bright side it will be steeper.

If the formation rate of cluster is such that for the first few age bins the size
of sample effect is still the most important constraining factor for the maximum
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mass in a bin, and only for the older bins the mass truncation is noticable, then
the effect will be similar, but less clear. If, on the other hand, the formation rate
is already sufficiently high to make the physical upper mass limit determine the
maximum mass in the youngest age bin, the effect will be maximal, and one will
obtain even a truncated LF. This LF will also show a bend at the luminosity of
the oldest most massive cluster.

M51 is an interacting galaxy, with triggered star formation. The star for-
mation rate is therefore expected to be reasonably high, so if there exists a
maximum possible mass for clusters in M51, we might well detect a bend in the
LF. Owing to the huge sample that will be described in Chapter 4, extracted
from the data set described in the next Chapter (3) we can even try to look for
variations across the disk of the galaxy.
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Chapter 3

Observations of M51

In order to investigate the distribution of the radii and luminosities of star
clusters and the dependencies on their position in their host galaxy we make
use of a set of observations from the Hubble Space Telescope (HST), equipped
with the Advanced Camera for Surveys (ACS).

There are several reasons why we would want to use the HST for this partic-
ular purposes, as mentioned by Larsen (2004). There are three main reasons. A
first might be the superb angular resolution (0”.05 for the ACS), which makes
it able to resolve small clusters (radii of about 2-4 pc) out to distances up to 20
Mpc. A second one is the large field of view of eg. the ACS. With 200”x200”
(both chips together) the field of view covers a significant fraction of a galaxy in
a single pointing for galaxies not too far away. And the last, but certainly not
least, reason is the spectral range the HST offers us. For a thourough investiga-
tion of young stellar populations, coverage of the whole spectral range from the
near-UV to the near-IR is needed. For these reasons a lot of research to stellar
populations of different ages is already carried out using HST; this is reviewed
by Larsen (2004); Whitmore (2003).

The reason to use the particular dataset described below is easily explained.
Never before there was such a huge part of a face-on galaxy imaged with this
angular resolution and photometric deepness. Earlier M51 studies were limited
to WFPC2 and NICMOS pointings, which did not cover the whole system, see
e.g. Bik et al. (2003); Bastian et al. (2005b); Gieles et al. (2005); Lee et al.
(2005). This new, total coverage of the whole system is a unique opportunity
to investigate in great detail the whole population of clusters. Because of the
recent interaction with NGC 5195 (Salo & Laurikainen (2000)), lots of young
star clusters are present. A clear rise in cluster formation rate 50-70 Myr ago
is confirmed by Bik et al. (2003). The large contrast between spiral arms and
interarm regions is the last ingredient for a very useful set of data to investigate
a large cluster sample and relations between cluster properties and the location
in their host galaxy.

To celebrate Hubble’s 15th anniversary, Cycle 14 HST proposers were en-
couraged to submit proposals to complement or analyze the unique dataset of
M51. The images were taken as a part of the Hubble Heritage Project and
became publicly available in April 2005.
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Figure 3.1:
On overlay of the six HST/ACS pointings that together make up the mosaic covering the

whole system of M51, including companion (NGC 5194/5195) on a DSS image. All visible

panels consist of 4096 x 2048 pixels, resulting in a 12200 x 8600 pixel mosaic. In all frames

B (F435W), V (F555W), I (F814W) and Hα (F658N) images are taken. See also Mutchler

et al. (2005).

3.1 Available data

In January 2005, the Hubble Heritage Team obtained a set of 4 (B, V, I, Hα)
mosaics of the system NGC 5194 (M51) and its companion, NGC 5195, see
Fig. 3.1. A color-composite of these images can be seen in Fig. 3.2, and a smaller
detail, in which the full resolution can be appreciated, is shown in Fig. 3.3. A
full description of the dataset and reduction is given in Mutchler et al. (2005),
therefore only a brief description will be given here.

In the different filters, different exposure times are used. Also a smal dither-
ing has been applied to correct for the geometrical distortion and to fill up the
chip gaps, using the technique of drizzling (see also Section 3.2). An overview of
the different exposure times and corresponding limiting magnitudes are given in
Table 3.1. For the dithering, the standard ACS pipeline values are used: 2.5x1.5
pixels and a larger one of 5x60 pixels to span the chip gap.
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Figure 3.2:
A color composite of the 4-filter mosaic of M51 and companion. R, G and B colours are

made by the I, V and B band respectively. Hα is added to the red image to clearly show

the emission of hydrogen, mainly from star forming regions and supernova (super-)bubbles.

This image is by far in full resolution. The separate images are scaled, to correct for differ-

ences in exposure time, in such a way that they are all about equally visible. Image from

http://hubblesite.org/newscenter/newsdesk/archive/releases/2005/12/

3.2 Data reduction

The fits-files were retrieved from the Multimission Archive at STScI (mast)
after standard pipeline processing, including bias, darkframe and flatfield cor-
rections as well as processing by the MultiDrizzle procedure. For details on
the standard calibration, see Pavlovsky et al. (2005).

The drizzling procedure is a task that combines multiple dithered images into
one clean image. This resulting image is clean of geometrical distortion, cosmic
rays and dirty pixels and is corrected for biases, flatfields and darkframes. The
point spread function (psf) is constant over the whole chip. For details on the

Table 3.1: Exposure times and corresponding limiting magnitudes for the four filters used.

Filter Exposure time Limiting magnitude

F435W (B) 4 x 680s = 2720s 27.3 mB

F555W (V) 4 x 340s = 1360s 26.5 mV

F814W (I) 4 x 340s = 1360s 25.8 mI

F658N (Hα, [N II]) 4 x 680s = 2720s -
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Figure 3.3:
A zoom in to Fig. 3.2. The lower right image is at full resolution. 1 pixel corresponds to 0.05

arc seconds, which is about 2 parsec at the distance of M51, about 8.4 Mpc. A lot of details

are clearly visible, like clusters, grouping together in complexes, surrounded by a superbubble,

the result of the supernova explosions of the most massive stars.

drizzling procedure, see Fruchter & Hook (2002); Mutchler et al. (2002).
I only use drizzled images in this thesis and therefore I will use this single

psf for the whole mosaic whenever needed. The psf has been obtained empiri-
cally by Marcelo Mora (ESO, Garching) from images of the globular cluster 47
Tuc, separately for every available filter.

3.3 The M51 system

M51 is a Milky Way type Sbc galaxy, and its companion is a dwarf barred spiral
of early type SB0. The distance to the system is determined to be 8.4 ± 0.6
Mpc by Feldmeier et al. (1997) from planetary nebulae.

The system is seen almost face on (Tully (1974)). This greatly simplifies
determinations of galactocentric distance, as well as whether or not the cluster
is in a spiral arm. The height above the galactic plane cannot be determined.

An ACS pixel corresponds to 0”.05. At a distance of 8.4 Mpc this corre-
sponds to a distance of 2 pc. This is smaller than typical galactic cluster sizes,
which are about 3-4 pc (Spitzer (1987); Kharchenko et al. (2005)). This creates
the possibility of ’resolving’ the star clusters, with which we mean that we can
clearly distinguish stars from clusters by comparing the size of the source with
the psf.



Chapter 4

Deriving cluster parameters

To investigate the properties of the star cluster population of M51 it is important
to have a complete unbiased sample in order to get statistically reliable results.
In this chapter the whole process of the determination of the different parameters
are described. In Sect. 4.1 I describe the selection of point sources. The radii
are measured, as described in Sect. 4.2 and the procedure of the photometry
fills Sect. 4.3. Sect. 4.6 concerns the selection of the final sample, of which the
completeness is discussed in Sect. 4.4. The results are the topic of the next
chapter.

4.1 Source selection

Selection of pointlike sources was done with the SExtractor package (Bertin &
Arnouts, 1996), version 2.3.2. The image has been smoothed over an area of 10
pixels. For this smoothed area a mean and standard deviation of the intensity
are determined. Deviating pixels were iteratively discarded until every pixel
was within ±3σ of the mean value. A source now is defined as a region on
the original image where at least 3 adjacent pixels exceeds the background by
at least 5σ. The resulting source list in the three different filters were cross-
correlated, and only sources within a 2 pixel uncertainty were kept, removing a
lot of the remaining noise. The resultant coordinate list contains 75 436 sources.

4.2 Radius determinations

The excellent resolution of the ACS camera (1 pixel =̂ 0”.05) gives us the
opportunity to distinghuish clusters from stars, by means of their spatial extent.
We use the ISHAPE routine within the BAOlab package (Larsen, 1999, 2004)
to determine the effective radii (projected half light radii) of all point sources.
Analytic cluster profiles are convolved with an emperical PSF of the camera.
We used two different analytic cluster profiles: a Moffat profile and a King
profile, as will be explained below (Sect. 4.2.2).The convolution is compared to
the data and χ2 is determined. By minimizing χ2 the best fit effective radius
can be obtained.
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4.2.1 The Point Spread Function

The PSF was obtained from a drizzled image of the globular cluster 47 Tuc. All
sources on this image are in fact images of the PSF, so by using isolated stars,
which are not saturated, it is not too hard to extract the PSF. Because of the
drizzling procedure the PSF is constant over the whole field of view (Mutchler
et al., 2002). It differs (mainly in size) per filter, and we therefore use different
PSFs for the different filters.

4.2.2 Analytic cluster profiles

We used two different profiles, because different types of clusters are found in
galaxies (different populations are better described by different profiles). The
first one is a Moffat profile (Moffat, 1969) with a power law index of -1.5.
This is very similar to the average profile of young star clusters in the LMC
(Elson et al., 1987). The second choice is a King profile (King, 1962) with a
concentration parameter (tidal radius over core radius) of 30. This is found
to be a good description of old galactic globular clusters (Harris, 1996) and
therefore expected to also describe the older M51 clusters rather accurately.

Whereas we try fitting two different profiles, Larsen (1999) has shown that
the derived effective radius (via a conversion factor (Larsen, 1999) from the two
fit FWHM) differs only marginally.

4.2.3 Cluster fits and precision

We allow the cluster profiles to be elliptic. The orientation as well as the ratio
of major to minor axis are free parameters. If a cluster is fit to be elliptic, the
resulting effective radius in fact is the semimajor axis of the ellips.

Besides the cluster profile, also a pure PSF fit is applied to the sources. A
comparison of χ2 of this fit and the one of the best fit cluster model can be used
as a selection criterium for clusters.

According to Larsen (2004) the minimal cluster size ISHAPE can resolve
is one with a FWHM of 0.2 pixels. With ACS, at the distance of M51, this
corresponds to 0.5 pc. We therefore take this as a lower limit. The accuracy of
the routine is of the same order.

4.3 Photometry

On all sources on the list created by the SExtractor routine, photometry is
performed using the IRAF/DAOphot package. An aperture of 5 pixels in radius
was used and the background annulus with an inner radius of 10 pixels and a
width of 3 pixels.

4.3.1 Aperture corrections

Since we are not dealing here with pure point sources an aperture correction has
been applied. Artificial sources have been created using the BAOlab package
(Larsen, 1999, 2004), with a Moffat profile with power law index of -1.5 and
an effective radius of 3 pc. This profile is concolved with the filter dependent
PSF. Convolved profiles were used to measure aperture corrections from 5 to
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10 pixels (=̂ .5 arcsec). The resulting aperture corrections for F425W, F555W
and F814W were -0.16, -0.16 and -0.17 respectively. These values would be 0.04
lower/higher for sources which are 1 pc bigger/smaller. Aperture corrections
between 0”.5 and infinity were taken from Sirianni et al. (2005).

4.3.2 Extinction corrections

All clusters are affected by the same Galactic foreground extinction. We take
a value of E(B − V ) = 0.038 from Schlegel et al. (1998). For accurate local
(i.e. in the M51 system) extinction determinations one needs a wide range
of broadband photometry, in order to overcome the age/metallicity/extinction
degeneracy. Because we only have B,V,I photometry we are not able to clearly
distinguish the effects. Therefore we do not correct for local extinction. A
strongly peaked (at E(B −V ) = 0) power law distribution for extinction values
is found by Bastian et al. (2005b) for the cluster population in the central regions
of M51. Mean values for AV are in all age bins around 0.3 (a little smaller for
clusters older than 20 Myr, then for the younger ones), with a larger scatter for
younger clusters.

4.4 Completeness

In order to have complete, unbiased samples of clusters we perform completeness
test with artificial clusters. Because it is to be expected that the completeness
fraction is a function of cluster luminosity, cluster size and background intensity
(and variation) I will determine 90% completeness limits for three seperated
background regions, for different cluster sizes.

The completeness limits are determined on square section of the image of
1000 x 1000 pixels. Artificial sources were added to the image and the same
routine applied to fit all sources back. This resulted in 90% completeness limits
of 23.3 mag for F435W and F555W and 23.0 mag for F814W.

4.5 Background regions

Because the background intensity is strongly varying over the whole image,
especially when comparing spiral arms with the interarm regions, we divided
the image in three background levels, as indicated in Fig. 4.1. The image has
been smoothed with a Gaussian kernel with a size of 200 pixels. Two isophotes
on this smoothed image are used as background limits.

4.6 Sample selection

Finally it’s possible to select a sample of clusters for the investigation. Because
it has proven much more difficult to obtain a reliable cluster radius than to be
sure that a source is a cluster, we will use two seperate samples of sources for
the investigation of the radii and for the investigation of luminosities.

For both sets the following conditions should hold:

1. The source is detected in F435W, F555W and F814W ;
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Figure 4.1:
The contours that outline the three background intensity level regions, superimposed on the

image in the F555W passband. The bright white line encloses the highest background level

and everything outside the grey line is called low background. The area in between the white

and grey lines is a transition region, to have the other two regions clearly distinguishable.

2. The source is extended, defined as Reff > 0.5 pc, the accuracy of ISHAPE ;

3. The fit of the cluster profile is better then the fit of a pure PSF, distin-
guished by means of χ2

4. The source is brighter than the 90% completeness limit

5. The nearest neighbouring source is at least 5 pixels away, to avoid con-
tamination

These criteria will deliver a complete set of sources of which we can be sure
are clusters. In order to also have reliable radius determinations, we have to
impose the following extra constraints:

6. The source is on the lowest background region (for reason, see below)

7. The nearest neighbour is at least 10 pixels away

Tests performed by Remco Scheepmaker (private communication) have shown
that for clusters in a highly varying background the radius determination is
rather unreliable. The main problem is that the ISHAPE routine considers the
background smooth (a mean value with standard deviation which is constant
in the ring in which the cluster profile is fit). In the high and intermediate
background regions the background is not only high, but also strongly varying.
Result is that the best fit model will be a model in which a high background
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value is fit as being part of the cluster. Other solutions than just ignoring high
(and thus highly varying) background regions are currently under investigation.
The nearest-neighbour criterium is stronger here, because otherwise light of a
neighbouring cluster is inside the region where the cluster profile is determined.
This will be have the same effect as a variable background.

The resulting sample used for investigations of radii will therefore be con-
siderably smaller than the sample used for the study of the luminosity function.
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Chapter 5

The distribution of M51

cluster radii

This chapter deals with the most interesting distributions and relations with
respect to the radii. Implications of the results and discussion are the subject
of Chapter 7, here only an overview of observational results is given.

Wherever distribution functions are fit to the data, I also refer to Ap-
pendix A, where I describe the fitting procedure of a distribution function in
different circumstances and problems with different methods to do so. Main
conclusions of that Appendix are that distribution functions are most reliably
fit using a Maximum Likelihood method, unless there are several parameters to
be fit. In the latter case the Likelihood Function can have several local extrema
and the computational time goes as a power law, with the number of free pa-
rameters as exponent. Therefore, multiple parameter distribution functions will
be fit in a different way, as described in Appendix A.

5.1 Radius distribution function

The study of the radii is at the time of writing of this thesis still under debate.
Unreliable radius determinations are the main reason to only put preliminary
results in this thesis. Conclusions, in the next chapter, will also be only quali-
tative.

Because of the very restricting selection criteria, listed in Section 4.6, the
resulting complete set of reliable clusters only contains 769 clusters. The dis-
tribution of these radii can be seen in Fig. 5.1. As can be seen, there is no fit
drawn. It is as yet not clear what a reasonable functional form of this fit should
be. Right of the peak, a power law can be fit using a Maximum Likelihood
method (see Appendix A). This, although sensitive to fitting limits, gives a
power law slope somewhat steeper than 2, as was for M51 also found by Bastian
et al. (2005b).

From the fact that the distribution is peaked it is obvious that there is
something like a preferred radius. The value is around 3 or 3.2 parsec, which
are the median and mean radius, respectively. This is in good agreement with
the results of Jordán et al. (2005) for old cluster populations in the Virgo galaxy
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Figure 5.1:
The distribution of radii in M51, with the radius on a logarithmic scale and the number linear.

The error bars indicated are poissonian errors resulting from counting statistics. Due to the

very restricting selection criteria, as described in Section 4.6, there are only 769 clusters in the

sample. For this clusters the radii are trustworhty and it is a complete sample. The location

of the peak and the shape of the distribution are therefore statistically justified. Because of

the skewness of the distribution the mean and median radius are somewhat different, and are

both indicated for future comparison. Figure courtesy of Remco Scheepmaker.

cluster, Harris (1996) for old clusters in our Milky Way and for samples of young
clusters, as found by e.g. Larsen (2004).

5.2 Radii throughout the disk

The set of reliable radii is too small to have statistically valuable radius dis-
tributions at, for example, different galactocentric radii. We therefore stick to
mean radii at different galactocentric distances. The result is show in Fig. 5.2.
The red rectangles are mean radii from a sample of clusters with that particular
mean galactocentric distance. Although the mean radius increases a little bit,
there seems to be just a very weak relation between both parameters. Fitting
a powerlaw of the form r ∝ dx gives an exponent of x ≈ 0.1, indicated by the
dashed line in the Fig. 5.2. The mean or, if you like, preferred radius is roughly
constant over the whole disk. Note that in the case of M51, we are dealing with
an, in general, young cluster population, of which the majority of the clusters is
formed because of the tidal interaction between M51 and NGC 5195. The solid
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Figure 5.2:
The variation of the mean effective radius with galactocentric distance. The red rectangles are

from our observations of M51; the dashed line is a power law fit through them, with a slope

of ∼0.1. The solid line is the fit of the Milky Way globular clusters (note: all old clusters), as

obtained by van den Bergh et al. (1991). The dot-dashed line is the relation between radius

and galactocentric distance for tidal equilibrium of the clusters (of arbitrary mass, varying

this mass scales the line vertically, and the scaling is arbitrary anyway), see Equation 2.1.

Figure courtesy of Remco Scheepmaker.

line is the (appropriately scaled) best fit for the Milky Way globular cluster
system, i.e. an old cluster population. The dot-dashed line is the (again appro-
priately scaled) relation for clusters in tidal equilibrium with their host galaxy,
as described in Sect. 2.1, Eq. 2.1. Any changes in the shape of the distribution
function cannot be shown significantly.
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Chapter 6

Luminosity function

As described in Chapter 2, Section 2.2.2, the luminosity function (LF) is a useful
tool in the study of a cluster population, especially if no reliable information
regarding masses, ages and extinction of individual clusters is at hand.

The luminosity function in the three different passbands is shown in
Figs 6.1, 6.2 and 6.3, in the uppermost panels. The fit results in the three
different passbands are summarized in Table 6.1, for a single power law fit as
well as for a double power law. The final column in this table gives a comparison
of the goodness of both fits using reduced χ2 of the fits. It is clear that in all
cases the double power law function fits better. A comparison of Likelihoods
for both fits (see Appendix A) would give a stronger argument, but as I didn’t
use that method to fit, I keep it with this criterium.

The single power law fits are all in good agreement with previously obtained
results for the same galaxy (Bastian et al., 2005b) and other cluster populations
(Larsen, 2002; de Grijs et al., 2003a). Double power laws fit better. To make
this statement quantitative, see the last column of Table 6.1. As explained
in Section 2.2.2, this double power law behavior hints to a truncation of the
cluster initial mass function (CIMF) at the high mass end. Discussion on this
topic is reserved for the next Chapter (7). A double power law, with similar
slopes was already found for M51 by Gieles et al. (2006c). Here we use a slightly
different sample and another fit method, and we still obtain similar results. This
strengthens the claim that the LF indeed is a double power law, instead of a
single one. Whitmore et al. (1999) found for the ‘Antennae’ a double power
law, of which the slopes on both sides of the bend are similar to our results,
although the bend is at a higher luminosity.

A side remark on the location of the bend: Gieles et al. (2006c) corrected
for mean local (i.e. in the M51 system) extinction. Since no reliable estimates
for local extinction can be made I do not correct for local extinction here, only
for foreground extinction, as described in Chapter 4.

6.1 Relations between LF parameters and loca-

tion

Because of the size of the cluster sample we have, especially if we are only inter-
ested in luminosities and do not care about reliable radius determinations, we
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can divide the sample in certain subsamples. This section describes a few such
attempts and the results. Discussion on the results will be given in Chapter 7.

6.1.1 Luminosity functions in different environments

When examining only luminosities of clusters, we just have to be sure that
the source is extended and only the first five selection criteria mentioned in
Sect. 4.6 should hold. Therefore it is possible to make LFs of subsets of the
cluster population. An interesting feature appears when we divide the sample
in three more or less equally sized subsamples in concentric rings, like shown in
Fig. 6.1, 6.2 and 6.3, for F435W, F555W and F814W respectively.

Two interesting trends are visible in all three passbands. In the first place,
the location of the bend shifts to fainter magnitudes if one moves out in the
disk. Secondly, the slope of the faint end side of the LF gets shallower when
moving inwardly. The results are summarized in Table 6.2. Although the results
clearly show a trend, the statistics might raise some doubt. Because the different
distance bins show bend locations that are not any more than about 1-4 σ apart,
the reader might not be convinced by every single passband on itself. The fact,
nevertheless, that we see the same trend in all three passbands indicates that
we are looking at a physical, instead of statistical, effect.

In Fig. 6.4 the LF is shown for two different background regions (as described
in Sect. 4.4). Results are similar for the other two filters. The intermediate
background region is left out, because of the low number of clusters. Almost no
variation with background region is found for the location of the bend. In the
example given (Fig. 6.4), the location differs by ∼ 1σ. This is typical also for
the other two passbands. The slope at the faint end of the LF, nevertheless, is
significantly shallower for the clusters on the high background than for clusters
on a low background. These slopes are significantly different; they are seperated
by tens of standard deviations, and so require a physical explanation.

In summary, the results of an investigation of relations between LF param-
eters and location are:

1. The bend in the LF occurs at brighter magnitudes, closer to the center of
the galaxy

Table 6.1: Fit results of the whole sample in all three pass bands. Every cluster with m < 23
is taken into account in the fits. The first column is the passband, the second the number
of clusters within the fit range. Column three contains the slope of the single power law fit,
whereas the fourth, fifth, sixth and seventh column contain the both slopes and the location
of the bend of the double power law respectively. De final column shows the ratio χ2

d
/χ2

s of
the goodness of both fits in terms of chi squared, comparing the single and double power law
distribution functions.

Single PL Double PL

Filter N α α1 α2 Mbend
χ2

d

χ2
s

F435W 3891 2.18 ± 0.02 1.96 ± 0.04 2.52 ± 0.08 -8.33 ± 0.15 0.63
F555W 4750 2.19 ± 0.02 1.99 ± 0.04 2.56 ± 0.07 -8.38 ± 0.13 0.67
F814W 8041 2.18 ± 0.01 2.08 ± 0.02 2.54 ± 0.08 -8.90 ± 0.16 0.77
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2. The location of the bend in the LF is largely independent of background
intensity

3. The slope of the faint end side of the LF is shallower, closer to the center
of the galaxy

4. The slope of the faint end side of the LF is shallower in high background
regions
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Figure 6.1:
The luminosity function of clusters in M51 in MF435W which fulfill the criteria listed in

Section 4.6 with a magnitude brighter dan mF435W = 23.3. The double power law fits are

performed on all clusters brighter than mF435W = 23. Only clusters with a galactocentric

distance less than 8.4 kpc are in this sample (in order to exclude clusters belonging to NGC

5195). The top panel is the whole sample, the lower three plots are three, in number more

or less equally divided, samples, at different galactocentric radii. Both slopes as well as the

position of the bend are indicated (vertical dashed line).



6.1. RELATIONS BETWEEN LF PARAMETERS AND LOCATION 43

Figure 6.2:
The luminosity function of clusters in M51 in MF555W which fulfill the criteria listed in

Section 4.6 with a magnitude brighter dan mF555W = 23.3. The double power law fits are

performed on all clusters brighter than mF555W = 23. Only clusters with a galactocentric

distance less than 8.4 kpc are in this sample (in order to exclude clusters belonging to NGC

5195). The top panel is the whole sample, the lower three plots are three, in number more

or less equally divided, samples, at different galactocentric radii. Both slopes as well as the

position of the bend are indicated (vertical dashed line).
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Figure 6.3:
The luminosity function of clusters in M51 in MF814W which fulfill the criteria listed in

Section 4.6 with a magnitude brighter dan mF814W = 23.3. The double power law fits are

performed on all clusters brighter than mF814W = 23. Only clusters with a galactocentric

distance less than 8.4 kpc are in this sample (in order to exclude clusters belonging to NGC

5195). The top panel is the whole sample, the lower three plots are three, in number more

or less equally divided, samples, at different galactocentric radii. Both slopes as well as the

position of the bend are indicated (vertical dashed line).



6.1. RELATIONS BETWEEN LF PARAMETERS AND LOCATION 45

Figure 6.4:
The luminosity function of clusters in M51 in MF435W which fulfill the criteria listed in

Section 4.6 with a magnitude brighter dan mF435W = 23.3. The double power law fits are

performed on all clusters brighter than mF435W = 23. Only clusters with a galactocentric

distance less than 8.4 kpc are in this sample (in order to exclude clusters belonging to NGC

5195). The top panel is the whole sample, the lower two plots are the clusters from the high

and low background intensity regions, as indicated. Both slopes as well as the position of the

bend are indicated (vertical dashed line).

Table 6.2: Results of fitting a double power law distribution to several subsets, more or
less equally divided in number. Three subsets at different galactocentric radii are fit. For all
three passbands both the slopes as well as the location of the bend (in the magnitude of the
filter in question) are given. Trends are similar in the three different filters, strengthening the
credibility of the effects.

Filter D (kpc) α1 α2 Mbend

F435W 0 - 3 1.67 ± 0.06 2.60 ± 0.17 -8.76 ± 0.17
3 - 5.5 2.08 ± 0.05 2.71 ± 0.18 -8.42 ± 0.22

5.5 - 8.4 2.17 ± 0.03 2.55 ± 0.12 -7.99 ± 0.31
F555W 0 - 3 1.61 ± 0.02 2.56 ± 0.14 -8.62 ± 0.13

3 - 5.5 2.14 ± 0.05 2.75 ± 0.15 -8.48 ± 0.24
5.5 - 8.4 2.15 ± 0.01 2.46 ± 0.08 -7.71 ± 0.25

F814W 0 - 3 1.53 ± 0.04 2.61 ± 0.15 -9.02 ± 0.12
3 - 5.5 2.17 ± 0.00 2.47 ± 0.03 -7.76 ± 0.10

5.5 - 8.4 2.10 ± 0.00 2.38 ± 0.02 -7.11 ± 0.08
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Chapter 7

Implications and

speculations

This chapter is devoted to giving some discussion on the results obtained. Be-
cause all of the described projects are still part of ongoing work, the distinction
between implications and speculation can be a bit vague. Conclusions described
in this chapter are descriptions of how I think the results should be interpreted,
at the time of writing of this thesis. This is likely to change in due time.

7.1 Cluster sizes

The clusters in M51 seem to have a distribution function peaked around 3 pc.
This is comparable to what the globular clusters in our galaxy show (van den
Bergh et al., 1991). Jordán et al. (2005) report on the radii of star clusters
of galaxies in the Virgo cluster. They show that an appropriate scaling of the
radius distribution function, as a function of the intrinsic color of the galaxy,
makes the peaks of all their populations come together. The preferred cluster
radius seems to be related to the color of their host galaxy. The Virgo cluster
consists of elliptical galaxies, all with old cluster populations. As is shown by
Scheepmaker et al. (2006), the same color correction on the size distribution of
our young cluster population in M51, makes the peak of our distribution coincide
with the old populations of Jordán et al. (2005). This is very remarkable as it
might indicate that the peak of the radius distribution function is subject to
some kind of evolution, closely linked to the evolution of the host galaxy.

An important difference between the old cluster population of our galaxy
and the relatively young population in M51 is the size distribution as a function
of galactocentric distance. Where the old population shows a relation close
to tidal equilibrium, our younger population shows hardly any relation at all.
This also can be an evolutionary issue: clusters are born with a more or less
random radius, peaked around some preferred radius and slowly evolves towards
an equilibrium with the host galaxy. Old populations had much more time to
adapt to the tidal field (cluster relaxation times are of the order of 10 Gyr for
globular cluster like masses) and therefore they are on their way evolving into
this equilibrium. It would be interesting to see also intermediate cases.

The fact that no relation is found between cluster radius and background
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intensity can also be explained. If one would have obtained a relation between
both, it would mean that we could see the effect of cluster stretching and squeez-
ing in e.g. spiral arms (see Chapter 2). This stretching and squeezing mainly
affects the outer region of clusters, leaving the nucleus comparatively undis-
turbed. Because we determined half-light radii, the clusters nucleus emits the
main part of the light that is used for size determinations. Gieles et al. (2006a)
have shown that the clusters half mass radius is much less affected by dynamical
distortions when being in interaction with spiral arms than is the ‘outer’ radius.

7.2 Maximum cluster mass, star formation and

cluster disruption

From the statistical significance of the double power law fit to the LF (compared
to a single power law) we infer, on grounds of the models developed in Gieles
et al. (2006b) and shortly explained in Sect. 2.2.2, that there exists a physical
upper mass limit for star clusters in M51. I do not make any statement about
the exact value for this truncation for the following reasons. In the first place
this is sensitive to the formation rate of the clusters, which I also did not derive
from the observations. Secondly, the conversion of the location of the bend
in magnitudes to a truncation of the mass functions implies that this bend
is exactly there where it is. Instead, we have no reliable cluster-by-cluster
extinction information, and therefore this bend is supposed to be shifted by the
mean extinction (which is expected to be about 0.3 magnitudes in the F555W
passband, based on extinction in the central region of M51, as derived by Bastian
et al. (2005b)).

The question now is : why is there a maximum mass for star clusters? Is there
really a mass gap between the most massive star clusters and dwarf galaxies?
Is this expected to be different in different galaxies? We can get hints to the
answers to these questions from the obtained dependencies of the location of
the bend on galactic position, as derived in Chapter 6, Section 6.1.1.

The question of maximum mass is closely related to the formation of clusters.
Of course a maximum possible mass for Giant Molecular Clouds results in a hard
limit on a maximum possible cluster mass. In reality, however, one GMC tends
to form a whole complex of clusters, see e.g. Bastian et al. (2005a). These
complexes are large, but not large enough the sample the whole mass function,
until a possible truncation (for which one easily needs several thousands of star
clusters, depending on the slope of the mass function and the exact value of the
truncation).

7.2.1 Mass limits at various locations

The variation of the location of the bend tells us that this upper mass limit is
lower, further out in the disk. There, the bend occurs at a lower luminosity.
Molecular clouds at those locations are larger, and therefore also more massive
(because of the hydrostatic equilibrium between mass and radius). Shear effects,
resulting from the differential rotation of a flat-rotation-curve disk, on the clouds
are apparently not that important. Shear effects are larger in the inner regions
of the galaxy. The size of a cloud is therefore limited to a smaller value in the
inner regions. Because clouds are in hydrostatic equilibrium, their size and mass
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scale with each other. Result is that clouds in the outskirts of the galaxy can
in principle be more massive. From the fact that cluster can get more massive
in the inner regions we infer that cloud masses do not constrain the mass of
the cluster. This can be understood from the fact that a large cloud transforms
into a complex of clusters, rather than one single cluster.

Elmegreen (2002) and Elmegreen & Elmegreen (2001) already predicted a
maximum mass for star clusters, which should depend on the pressure in clouds.
Stars and clusters form from turbulent clouds (Krumholz & McKee, 2005),
where the gravitional forces are partly balanced by large scale turbulent mo-
tions.

It has been suggested that the mass of a star cluster depends on the cloud
core pressure and density as

M ∝ P 3/2n−2 (7.1)

With a maximum cloud core pressure, this would result in a maximum mass.
This mass limit is expected to be higher in the central regions of a galaxy, and
in spiral arms (so basically in the high background region), because there the
surrounding pressure is higher as well. The dependency on background is only
marginally found. This can be explained by the fact that once the cluster formed
(all within a high density region!) they move out of the spiral arm and only
later come back in. Because thegalactocentric distance of an orbit is more or
less constant the dependency on galactocentric distance is much more profound.

7.2.2 Cluster disruption at different sites

The slopes of the faint ends of the different LFs get steeper outward. If the
decrease of the slope is interpreted as the result of mass dependent disruption
of star clusters (see e.g. Baumgardt & Makino (2003); Boutloukos & Lamers
(2003); Lamers et al. (2005)), then it is clear that the typical disruption time is
shorter in the inner parts of a galaxy. Regions of higher surrounding densities,
where encounters are more frequent, are regions where clusters are destroyed.
Therefore the destruction rate of cluster in high density regions appears as a
much flatter faint-end-slope in the LF.
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Chapter 8

Outlook

Of course the work is not finished here. In the first place, better radius determi-
nations (and therefore a more reliable sample of cluster sizes) will be available
soon and thoroughly investigated (Scheepmaker et al., 2006). Comparison with
the work of Jordán et al. (2005) seems very promising.

With respect to the LF, it would be interesting to not only compare differ-
ent regions in one galaxy, but also intercompare galaxies. One cannot choose
every galaxy to look for a bend in the LF. One needs a large galaxy with a
comparatively high star formation rate (per unit area) in order to have a large
sample of cluster, in which in principle the mass function would be sampled all
the way up to the statistical limit. If the physical limit, then, is lower than this
statistical one, it will appear as a bend in the LF. Dependencies of the value of
the maximum mass upon host galaxy type, ambient density and so on will shed
a brighter light on the exact cause of the upper mass limit.
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Appendix A

Power law distribution

functions

In this appendix several issues regarding power law distributions functions will
be adressed. In order to obtain simulations of cluster samples, or stars within
a cluster (which have masses distributed more or less like the Salpeter mass
function, for example), it is important to be sure that the quantities one puts in
his simulations are really distributed in the way you want it. When doing this
analytically, you neglect the intrinsic statistical nature of distribution functions.
Therefore, a good way of creating a sample of stars or clusters is by random
sampling a distribution function.

On the other hand, you can have a dataset with data. When you expect
these data to be power law distributed, you want to fit a power law distribution
function. As I will show in this appendix, this is not as trivial as it may seem.
Binning the data is dangerous and almost always resulting in too shallow slopes.
Several methods will be compared, making use of a Monte Carlo simulations
using random samplinging of the distribution function.

I will here describe everything for the case of a radius distribution function,
but everything will remain the same if the variable is changed to for example
mass or luminosity. This is partially true also for the fact that I will assume
all these distribution functions to be a power law with a negative exponent.
Of course functional dependencies will change when this form is changed (and
sometimes it is even not possible to do everything analytically), but the methods
can in principle be applied to any other kind of functions. In the rest of this
appendix distribution function will be abbreviated by df and pldf will mean
power law distribution function.

A.1 Distribution functions

Distribution functions describe how different values for the (in our case) radius
are distributed over all possible values. In the case of a power law with negative
exponent this means that there are lots of small clusters and less large clusters.
The form in which this usually is written is

N(r)dr ∝ r−ηdr (A.1)
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This simply means that the number of objects wit a radius between r and
r + dr is proportional to r−η and η is usually called the power law exponent,
but ‘slope of the power law’ is also much heard. The normalization constant
that will change the proportionallity into an equality is determined by the total
number of objects.

The real number of objects between r1 and r2 is given by integration of
Eq. A.1:

N(r1 < r < r2) =

∫ r2

r1

N(r)dr =
C

1− η

[

r
1−η
2 − r

1−η
1

]

(A.2)

in which C is the normalization constant. The mean of a certain quantity X(r)
can be found using the following relation:

X =

∫ ∞

0
N(r)X(r)dr

∫ ∞

0
N(r)dr

(A.3)

It is clear that such a df is only an exact description of nature if one has an
infinitely large sample of objects. It is only defined differentially. The value of
a df is meaningless, only when it is integrated it becomes a physical quantity.

A.2 Random sampling a distribution function

Suppose you want to simulate a cluster population with radii distributed ac-
cording to a pldf with negative exponent. This in principle can be done totally
analytically. If one starts counting at the largest cluster with i = 1, then for
the radius of the i’th cluster you can write

∫ ∞

ri

rN(r)dr = C

∫ ∞

ri

r1−ηdr =
C

η − 2
· r

2−η
i = i, (i = 1, 2, 3, ...) (A.4)

Doing so would result in a perfectly distributed range of radii. The random
nature of a distribution function, however, has disappeared. Every sample with
the same number of clusters would have exactly the same sizes of clusters in it.
This is of course highly unlikely. A possibility to change this, and make Eq. A.4
more random is to let i in the righthand side of the equation be randomly varying
between for example i−0.5 and i+0.5. This would help a great deal (the radii of
clusters will most likely be different) but it still has an important shortcoming.
In reality in just a small sample of clusters it is unlikely, but possible, to have
one huge cluster, that seems to fall far beyond the distribution of the other
clusters in the sample. The chance that this happens again is proportional to
the df and therefore, if you have enough small samples, in the end everything
will average out and you are left with perfectly pldf distributed clusters. When
using a ‘random’ version of Eq. A.4 this will not happen (unless you make your
random version quite complicated).

An easier way to get a sample according to a df is using a random sampling
technique. This is a technique that can be used no matter what functional form
the df has and can be used with or without pre-determined upper and lower
boundaries for the radius (or mass, or luminosity, or...).

A recipe for this technique is as follows (for an example, see Section A.3).
The df needs to be converted to a probability density function, or pdf for short.
This means that the normalization is now chosen such that the integral of the
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function from the lower possible limit to the upper one gives the value 1. For
a df this simply means that the old constant (C) is now divided by the total
number of objects in the sample. If one wants to use a lower and upper limit,
then the integral between these limits should give 1:

pdf(r)dr =
C

N
· r−ηdr ;

∫ upper limit

lower limit

pdf(r)dr = 1 (A.5)

The power of the random sampling technique is hidden in the cumulative
pdf (cpdf for short). This is the integral of the pdf from the lower limit
to a certain radius. If this radius is chosen to be equal to the lower limit it
obviously gives 0, and if it’s chosen to be the upper limit, it necesserily becomes
1. All possible values will be in the interval [0, 1]:

cpdf(r) =

∫ r

rmin

pdf(r)dr ∈ [0, 1] (A.6)

If you now draw a random number between 0 and 1 (for example using the
IDL randomu function), you can interpret this as the value for the cpdf and
invert the function to see what value for the radius belongs to it. In this way
one can convert an array of random numbers between 0 and 1 into radii which
are distributed according to any df you like. In this way the resulting array is
really random and it also represents your df properly. All the above mentioned
problems are solved.

Possible disadvantages of the method can arise in several ways. The first
is a non-integrable pdf (an example of this is a Schechter (1976) function as
df as is sometimes used to describe cluster mass functions (e.g. Gieles et al.
(2006b); Whitmore et al. (1999))). In that case you will have to do the integrals
numerically. If you want your array to be as random as possible, you will have
to evaluate the integral in very many points. Otherwise the inversion of the
cpdf will be only available for a restricted number of ‘random numbers’ and
the resulting arrays of radii will only contain that many different values for the
radius. Not very random again...

A second kind of problem can arise when someone is using this techniques for
stellar mass functions. If you want to fill a low mass cluster with stars, according
to a Salpeter mass function (with a cluster mass lower than the highest possible
stellar mass), there is a non-zero possibility that your star is more massive than
the pre-determined cluster mass. This of course is not very physical, but can
fortunately be overcome quite easily.

A.3 Fitting a distribution function

In this section I will first with a concrete example show the use of the cpdf as
explained in the previous section. Once that is done, i will proceed with fitting
the distribution back in several ways. It will then become clear that this fitting
can bring along serious problems and can give wrong results. The reason for
the chosen fitting method in this thesis will become clear.

A.3.1 Creating an array of masses

In this example the masses of stars will be the quantity that are to be distributed
according to a pldf with exponent −α = −2.35, also called a Salpeter (1955)
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mass function (in the whole thesis I use η for the exponent of a radius df and
α for the exponent of a mass function). We take a cluster of given mass and
put stars in it with masses, randomly sampled from this Salpeter mass function.
The mass function of the stars is now given by

N(m)dm = C m−2.35dm (A.7)

in which the constant C can now only be determined from the total mass (the
cluster has a given mass, not a given number of stars), using Eq. A.3:

Mcluster = C

∫ mmax

mmin

m1−αdm (A.8)

C =
(2 − α)Mcluster

m2−α
max − m2−α

min

(A.9)

Now it is easy to construct the cpdf with this normalization. The big advantage
of using a pldf is that everything can be done analytically.

cpdf(m) =
1

m1−α
max − m1−α

min

(

m1−α
− m1−α

min

)

(A.10)

So if you take a random number from a random number generator and you
interpret this as the value for the cpdf, then a random mass, sampled from a
pldf is given by

m =
[

cpdf · (m1−α
max − m1−α

min ) + m1−α
min

]
1

1−α

(A.11)

If one now applies this formula to a series of random numbers one obtains a
series of masses. These masses are distributed according to a power law with
slope −α. If you do so you get for example, for a 104 M�cluster, Fig. A.1.
The used power law slope is -2.35 to obtain a power law sample of stars. In
the figure both a log-lin plot and a log-log plot are shown. Only bins equal in
size in a linear scale are used. For the stellar masses the upper and lower limit
respectively are 0.25 M� and 200 M�.

Now there are several ways of fitting back this power law. Because we
are here dealing with simulated data, we know exactly what is in the sample.
Therefore, fitting this back using different methods can give us quantitative
insight on the reliability of the methods. We will test four different methods
of fitting, two of which fit binned arrays of data, and two without any binning
involved.

A.3.2 Fitting a power law on binned data

Linear bins

Binning the data in bins that are equally sized (linear) is the most straightfoward
method and is often used in the literature. The reason for this is that is very
easy to fit a power law to these data, by just a linear fit:

log N = log C − α log M (A.12)

No matter what fit procedure is used, one directly obtains a value for both the
normalization constant (C) and the power law exponent (α), including errors.
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Figure A.1:
The sample of stellar masses created with the method of random sampling, as described in

Section A.2. In the upper panel the logarithm of the number in the bin is plotted against the

stellar mass on a linear scale. In the lower panel the stellar mass scale is made logarithmic

(to see the power law behavior a bit better). The errorbars are the poisonian errors on the

number of datapoints in a bin. The used power law exponent is -2.35 and the lower and upper

stellar mass limits are 0.25 M� and 200 M� respectively.

Already here you should be careful. Because on both sides of the equation there
are logarithms, it is very tempting to bin the masses in logarithmic bins (i.e. in
bins which are of the same size on a logarithmic scale). As already noted by
Bastian et al. (2005b) this will end up in a wrong value of the powerlaw exponent,
namely exponent = 1− slope. This extra 1 arises from the conservation of
numbers: N(log m)d(log m) = N(m)dm = Cm−αdm = Cm1−αd(log m).

The first fit will thus be a fit of a straight line to the logarithm of linearly
binned data. The linear bins are already visible in Fig. A.1. With the IDL
procedure linfit a linear fit is performed on these bins. The errors on the
datapoints are given by the poissonian errors on the number of clusters in a bin.
The fit results are visible in Fig. A.2.

The first thing that strikes the eye is of course the fit result. The number is
much lower than the expected Salpeter value. How can this be? What is the
reason for the bad fit? As you can see from the fitted line, it is best for the low
mass bins, and much worse for the higher masses. This is because the relative
errors on the low mass bins are smaller than the relative errors on the high mass
bins (the error is just the poissonian error, and therefore equal to the square
root of the number of stars in the bin). Therefore the statistical weight of the
lower mass bins is much higher and fit is sort of ‘forced’ to go through these
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Figure A.2:
The results of a fit on the data using linear, equally sized bins. In the left column you can see

the results for the fit if the fit is performed on all the available clusters. It is obvious that,

especially on the high mass end, the deviations are large. In the column on the right side the

fit is performed on only the bins from 2 to 5 M�. The fit already is better. The slope is closer

to the expected Salpeter value, whereas the fit errors are larger (mainly because of the low

number of bins used). Of course it is not desirable to have a fit which depends on the range

of fitting.

bins. That is already overcome partly by fitting on a part of the bins, instead
of all of them, and then especially ignoring the lowest masses. This is also done
in Fig. A.2, in the righthand panel. Only stars with masses between 2 and 5
M� are taken into the fit. The result is already much closer to the Salpeter
value. We are, however, ignoring the majority of the stars (which are after all of
the lowest masses), and therefore the error on the result is also bigger already.
Besides that, you don’t want to use just a small fraction of your data to obtain
a better fit. The worst thing, to end with, is that you really don’t want to adapt
your fit range to a desired result. We will look into other ways of fitting a pldf.

Variable binsizes

The main problem with equally spaced bins were the statistical weights assigned
to the bins, forcing the fit through the lower mass bins. A way to avoid this is
making all the bins equally high (containing the same number of stars), resulting
in poissonian errors which are the same for all bins. Of course the bins are not
equally spread anymore. The width of the bins increases to higher masses and
the information of the power law is now stored in the spacing of the bins instead
of in the height of the bins. This method is explained in more detail by Máız
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Figure A.3:
The result of the fit of the fit using the method with bins of equal height. No bins are drawn,

but rather diamonds at the center of the bins, with the (poissonian) errorbars inside them.

The quantity on the vertical axis is the logarithm of the number of stars in a bin (which is the

same for each bin) divided by the width of the bin (which is an increasing number towards

higher masses). Even for the high mass bins the fit goes reasonably well through the points,

resulting in a very good χ2 (1.05).

Apellániz & Úbeda (2005). To these bins a power law function is fitted using
the curvefit procedure in IDL.

For this fit a couple of ‘rules’ are taken from Máız Apellániz & Úbeda (2005),
who have taken it from D’Agostino & Stephens (1986). The first one is the
number of bins, which for a sample of Nobj objects is preffered to be

Nbins ≈ 2 · N
2/5

obj (A.13)

The result of the fit can be seen in Fig. A.3. On the vertical axis, now, there is
not the number of stars per bin, for that would result in a horizontal line, but
rather the number of stars in the bin divided by the width of the bin. In that
way you mimic the pldf to make it comparable to previous figures.

A first conclusion is that the fit is already far better than before. The
slope is almost right and visual inspection of the figure learns that the line goes
reasonably well through all the bins. Because of the relatively large number of
bins and the fact that the error on a bin results only from the number of stars
in it (and not on the binwidth) the relative errors are small.
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A.3.3 Fitting methods without binning

This is easy to understand by the fact tha t binning smooths the data. In a
pldf with negative slope, datapoints are concentrated on the left side of the
bin. Therefore smoothing/binning always makes the data appear to be a little
bit more to the right. Doing so in every bin makes the total distribution appear
flatter than it really is. To get rid of this problem altogether one can also try
a method of fitting a pldf to these data without involving any binning at all.
Here I will describe two such methods.

The cumulative mass spectrum

One possibility is using a function that looks very much like the cpdf and is
described in detail by Rosolowsky (2005). In short the method is as follows. A
df is defined such that for every mass (m′) you can calculate how many stars
there should be with a mass higher than or equal to that mass:

N(m ≥ m′) = C

∫ ∞

m′

N(m)dm (A.14)

with C determined from the total number of stars. This function then has the
value 1 for the most massive star, 2 for the one but most massive, 3 for the
third in line, and so on. In the case of a pldf this function is analytically easily
solved. Big advantage of this method is that it involves no binning at all, so you
don’t have to care about things like statistical weights, poissonian errors and so
on. A second advantage is that it is very easy to also fit a possible truncation to
the mass function, by replacing the infinity symbol in Eq. A.14 by a parameter.
This parameter then is the maximum mass and simply is also a result of the fit.

The method, however also has its disadvantages. In the case of bins, the fit
has to be adapted to a number of points equal to the number of bins (in the
case of the method with variable binsize, this was 84), whereas here the number
of points is equal to the number of stars in the sample (in our specific example
11424). This makes the code very time consuming, especially for arrays of a
large number of objects. The time the fit takes goes quadratically with the
number of datapoints included.

We therefore test this method on a small part of the array of masses, ie. the
first 1000 masses in the list are fitted. This list is not sorted, so this is the same
as just a random sample of 1000 stellar masses. The result of the fit can be seen
in Fig. A.4. The fit agrees reasonably well with with the data as well as with
the expected Salpeter value of -2.35. The error on the slope is much bigger than
in the previous fit methods. That is the result of the fact that there are only
1000 out of 11424 stars taken into account.

The conclusion can be made that this method of fitting is fairly good, but
has the big disadvantage of not being able to handle a large amount of data,
like probably necessary for the project of this thesis.

Maximum likelihood fitting

In the last method I review here we make use of the probability density function
again (i.e. the distribution function normalized, such that the total integral
equals unity). The method is explained in detail in e.g Bevington & Robinson
(2003) and therefore I will only briefly discuss it here.
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Figure A.4:
The result of a fit using the cumulative mass spectrum. The data are plotted according to

Eq. A.14 and a power law fit to 1000 stars from the sample used before. The errorbars are

‘poissonian’ in the sense that they are just the square root of the value on the vertical axis,

which is the number. This represents the fact we estimate them to be on the median of their

own probability interval.

The idea is to maximize the likelihood that certain values of the parameters
to be fitted are the right values, followed by a comparison with other values.
The most probable value then is taken to be the result of the fit. For a pldf the
likelihood function (LF ) is created in a very easy way:

LF =
∏

i

fi (A.15)

fi = pdf(xi) = C · x−α
i (A.16)

The right hand side of this equation represents the pdf , just like in Eq. A.5: xi

are all data points, −α is the slope of the powerlaw and C is the normalization
constant, taken such that the total integral over the df will equal unity.

Because the numbers involved (the probability density at the data points)
are usually very small (and they are even multiplied), usually the logarithm of
the likelihood function is used:

log LF =
∑

i

log f(xi) (A.17)

Ofcourse, maximizing this logarithm is the same as maximizing the likelihood
function itself.
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Figure A.5:
The logarithm of the likelihood function as a function of the trial slope. Note the extremely

small values on the vertical axis.

In practice one makes an (educated) guess of the outcome of the fit and then
perturbs it in both directions to finally become a best fit result. Here, one can
see that the precision of this method stands with the stepsize one takes for the
perturbations of the parameters to be fitted. Especially when fitting several
parameters this involves large calculations (number of datapoints times number
of values for the first parameter times number of values for the second and so
on ...) and therefore one cannot take the steps ever smaller. The precision is
therefore linked to the stepsize you take.

The likelihood will only give the slope of the powerlaw, as the normalisation
is determined by the datapoints and the slope you try in a specific calculation
of the likelihood function. In the end you are able to determine the ‘real’
normalisation, using your best-fit slope and the total number of datapoints.
How the likelihood varies with the guessed slope can be seen in Fig. A.5.

What about the standard deviation of the fit method? The most easy way
(and the most general one as well) is one in which you perform Monte Carlo
simulations of artificial datasets with the same number of points, distributed
according to your best-fit distribution function. The slopes fitted back will give
a Gaussian distribution (centered around the slope you put in, in an ideal case)
of which the 1σ value is the 1σ value of the fit. This gives an independent way
of obtaining the standard deviation of the fit and it will solely depend on the
number of datapoints.
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Figure A.6:
For the fit methods described in the previous section we plot here the differences between

the fitted slope and the input slope. The absolute value of the slope is taken here, so the

slope of a Salpeter mass function is 2.35 in this case. A best fit Gaussian is overplotted.

Of particular importance is the place of the peak of this Gaussian, which would ideally be

zero. Big differences between the methods are seen and discussed in the text. The vertical

dashed lines are the places of the peaks of the fitted Gaussians. Note also that the scale of

the horizontal axis is different for the upper left panel.

A.3.4 Comparing the results

In the previous sections we just gave a fitresult of a fit to one particular array.
This already gives insight in the goodness of the fit, but a more quantitative
comparison can be made. In order to do so we repeat the process of random
sampling 1000 times. Every time we fit the array using our different fit methods.
Every time we record the slope of all four the methods, in order to get a distri-
bution of fitted slopes, where the input slope always is the same. Of course the
fit results in a slope and an error on the slope. The method therefore already
‘admits’ to be a bit wrong. To get a useful way of comparing the methods, we
will look at the distrubtion of (ηfit − ηinput). In principle, one should divide this
quantity by the standard deviation of the fit. The expectation is that we find
a more or less Gaussian distribution of fit offsets. The best fitting method of
course gives a Gaussian with a peak as close as possible to 0 and a width of 1.
I will not do so here, because the maximum likelihood method will give you a
standard deviation that is derived from Monte Carlo simulations, so the peak
of this gaussian will by default be of width 1. Therefore the comparison will be
a bit unfair (we can then only judge on the place of the peak, which will have
to be close to zero anyway.
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To come again a bit closer to reality, these 1000 clusters will not have the
same mass, nor the same number of stars, but rather masses distributed ac-
cording to a power law mass function, with a slope of -2 (see eg. Zhang & Fall
(1999); de Grijs et al. (2003c)) and a minimum cluster mass of 100 M�. The
total number of stars that have to be drawn from the df is calculated using
Eq. A.2. The sum of all these masses will probably not be exactly equal to the
previously sampled cluster mass, but this effect will easily average out over 1000
clusters.

The method of the cumulative mass spectrum is only able to handle datasets
with a 1000 elements maximum within a reasonable time. Therefore, when
creating a larger array of stars, only the first 1000 are used in this fit method.
The other methods will all fit on all the data.

For every series of fitting we will use the same array of stellar masses. In
other words, when an array of masses is created, this particular array will be
fitted with all four methods, to have an honest comparison. This opposite to
the easier method in which you just seperately test all the four methods on their
own.

The results can be seen in Fig. A.6. For all four methods the offset in the
fitted slope with respect to the input slope is fitted with a Gaussian. The first
feature that strikes the eye is the upper left panel (equally spaced linear bins),
and its very non-Gaussian distribution of offsets. It is clear that this method
really messes up your data. The fact that one does not see anything like a
Gaussian is mainly caused by the very sensitive dependence of the goodness of
the fit to the number of points fitted (actually: to the number of points in the
bins). In any case, the slope fitted back is too shallow.

The method using the cumulative mass spectrum gives Gaussian distributed
slopes, centred at 0.03, fairly close to zero. The big disadvantage of throwing
away every datapoint but the first 1000, makes the method less precise and
desirable (who wants to throw away data?) and therefore it will not be used in
the investigations in this thesis.

The method with variable binsizes (and in every bin approximately the same
number of datapoints, differing by at most one) is also doing fairly well. The
offset has a mean of less than 0.05. The width of the gaussian should be com-
parable to a typical standard deviation of a fit. Although this method does a
good job (it even has an extra peak, very close to zero), the last one will be
even better, as will become clear.

The maximum likelihood method has the sharpest peak, the closest to zero:
within 0.01. The precision of the fit will in the end be determined from Monte
Carlo simulations of the kind presented here, in which the standard deviation
of the fitted slopes will be taken as the standard deviation of the fit method.
Therefore the precision will be determined every time in a statistically indepen-
dent way and so will be trustworthy.

The method of maximum likelihood is the method that will be used to fit power
law distribution functions whenever needed throughout this thesis (unless stated
otherwise).
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A.4 Double power law distribution functions

Luminosity functions of star clusters are often not well described by single power
laws, but they rather resemble a double power law distribution (two distinct
power laws, divided by a bend at a certain magnitude), see e.g. Whitmore
et al. (1999); Gieles et al. (2006b,c). When fitting such a distribution using
the maximum likelihood method now consist of simultaneously fitting three
quantities (or four if you also want to fit on the normalization): two slopes and
a bend position. The likelihood function therefore now is a function of at least
three variables, resulting in the possible existence of multiple (local) minima.
Besides that, the computational time now, for the same precision as a single
powerlaw fit, will have to be cubed.

By testing the method in ways similar to the ones described before (random
sampling of a df and fitting back the input values) I found out that the end
result also is very sensitive to initial guesses and fitting boundaries. I have
therefore chosen to fit double power law distribution functions with the method
of equally high bins, described in section A.3.2; which was the best method
using bins. The other method without bins is usually too slow for the number
of data this thesis deals with.
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Appendix B

Summary for

non-astronomers

In this appendix I will try to explain in somehwat easier terms what I did during
the last year of my Masters program. I hope to be able to explain to people
without training in physics or astronomy what I did, why I did it and what the
results are. Although this appendix is meant for non-specialists I do expect the
reader to have some basic knowledge about physics and astronomy. The terms
star and galaxy should ring a bell, as well as the words gravity and tidal force
(just to mention a few examples). Be aware of the fact that this is a summary
for the layman, so I will not describe every single detail that matters in this
research.

The structure of this summary will be comparable to the structure of the
rest of this thesis. I will also refer to figures in the rest of this thesis in order not
get them in all double. I will start with a brief description of star clusters and
explain their properties. The introduction is somewhat more elaborate than
the normal text, because of the lack of knowledge that is to be expected from
non-astronomers. I will shortly compare the clusters in our Milky Way Galaxy
with cluster populations in other galaxies (and the differences in research carried
out). After a short discussion of what clusters do when they are in interaction
with their environment I will explain the central question of this thesis: is there
any relation between cluster properties and the location of the cluster in its host
galaxy? I will then end with the results (skipping most of the details about the
method) and a short outlook on what can be done in the near future.

B.1 Star clusters in different galaxies

In the universe, a whole hierarchy of structures can be recognized. Starting from
the bottom, we have the stars, which for a lrage fraction do not stand alone,
but rather form binaries or multipole stars: they ‘belong’ to each other and
orbit one another due to their mutual gravitation. Especially young stars, but
also some of the older ones, group also in larger agglomerations, star clusters.
Two examples of clusters (an old one and a young one) are shown in Fig. 1.1
and 1.2. These clusters, together with the stars that do not belong to a cluster,
the field stars, group together in galaxies, of which an example can be seen in

67
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Fig. 3.2, and more will follow in a section below. These galaxies in turn form
groups, called clusters of galaxies. In the rest of the text, wherever I just write
‘cluster’, I mean star cluster and not a cluster of galaxies. On the largest scale,
clusters are located along a foamy structure, with huge, almost completeley
empty ‘bubbles’ in between.

This thesis is about clusters, the largest structures we are concerned with
are galaxies. In this section I will provide the necessary background about star
clusters and galaxies.

B.1.1 Star clusters

A star cluster is a so-called simple stellar population. This basically means that
they were born together at the same time. All stars in a cluster are therefore
of equal age and initial composition (this composition changes in the center of
a star due to nuclear fusion). They consist typically of several hundreds up to
a few (tens of) million stars.

The stars move around on rather chaotic trajectories under the influence of
the gravitational forces of all other stars. The evolution of a cluster is therefore
governed by two kinds of evolution: dynamical (due to the gravitational and
tidal interactions) and stellar evolution (every star on itself goes through the
evolutionary phases, as if it were a single star). Sometimes these effects mix up
(e.g after the merger, or very close interaction of two stars), complicating the
detailed cluster evolution. Both these kinds of evolution will be explained in
somewhat more detail below.

B.1.2 A diversity of galaxies

These clusters reside in their host galaxy, and the surroundings of a cluster
have a large impact on the dynamical evolution of these objects. It is therefore
important to know what the differences are among these morphological types of
galaxies. I will only describe the morphological types here; details on e.g. origin
and evolution are to be found elsewhere.

In this description I will make use of the so-called Hubble tuning fork, a
schematic overview of the different morphological types, originally put forward
by Edwin Hubble (Fig. B.1). The left part of this diagram contains the elliptical
galaxies. These are in general quite red and massive. They contain hardly any
gas and dust and therefore they are currently not forming stars anymore. They
are slowly evolving because of the stellar evolution.

The other side of the fork (the fork part) contains the, usually younger,
normal and barred spirals. These flat, disk-like galaxies (in Fig. B.1 they are
imaged face on) have a large content of gas and dust and use this to form stars.
The galaxy under investigation here is an Sc type galaxy, as can be seen by
comparsion if Figs. B.1 and 3.2. Young cluster populations can of course only
exist in star forming galaxies, so the ellipticals will only contain old clusters.
Because clusters die rather young, usually, it is best to look at spirals in order to
investigate the dynamical evolution of star clusters (spirals also contain some,
typically in the order of a few hundred, old clusters).
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Figure B.1:
The morphological classification of galaxies by Edwin Hubble. On the left one sees the elliptical

galaxies (usually old, red and massive). On the right we have the normal spirals (upper half)

and barred spirals (lower half). Spirals are generally younger and have a huge content of gas

and dust.

B.1.3 Galactic vs. extragalactic cluster research

The main difference between clusters in our Milky Way Galaxy (galactic clus-
ters) and the ones in other galaxies (extragalactic clusters) is of course their
distance. Extragalactic clusters are very much further away, and therefore ap-
pear to our telescopes much fainter and smaller. Galactic clusters are usually
totally resolved, meaning that we can see all the stars separately as more or less
point sources. Extragalactic clusters are so far away that we can only see the
total light of all its stars together in a source that is just slightly bigger than a
point source (i.e. a bright dot, containing the light of all stars in the cluster).

It therefore is a greatly different kind of research when analyzing extragalac-
tic clusters as opposed to galactic clusters. The way in which one analyzes
galactic clusters is of no importance for this thesis, and therefore I will only
briefly describe what the basic idea is of the analysis of extragalactic clusters.

The fact that we see only the light of all stars together makes life a lot
harder. If you don’t know the age and mass of the cluster, you in principle
don’t know what kind of stars are in there. An additional problem is that the
light from the cluster travels through clouds of gas and dust on its way here,
making the light dimmer and redder. The challenge now is to see how you can
create the spectrum of light (distribution of the intensity with wavelength or
color) you receive from the clusters by chosing an appropriate cluster mass, age
and extinction (the reddening and diminishing effect of gas and dust).

Integrating star light of clusters

From theories of stellar evolution we know the spectrum of the light emitted
by stars of all different masses and all different ages. In principle it is straight-
forward to take an arbitrary mass, and add all this spectra up (for the same
ages, because clusters are single aged) and see if this looks like the light that
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we receive from the cluster. If not, take a different mass and try again. In this
way you can fit the age, mass and extinction of every cluster separately.

Unfortunately, this is not as easy as it may seem. In the first place, obtaining
spectra of all clusters is an observation time consuming operation. Therefore we
take a very rough measure of it, called the spectral enery distribution (SED).
This basically is a spectrum, but with a very low resolution (only measuring
the intensity of the light in a very restricted number of wavelength intervals,
whereas a full spectrum has a measure of the intensity at very many different
wavelengths). In this way one looses a bit of information, but general informa-
tion on the color of the clusters is still available, and that is the main source of
information.

A cluster is born with all kind of stellar masses. Most of the stars are of
low mass, very few are very massive. This distribution over different masses is
more or less constant from cluster to cluster. Therefore, if one knows the total
mass of the cluster, one can predict which stars are in it (the relative numbers
of different masses are known, and the sum of all masses is the cluster mass).
For all of these stars the evolution is known in quite some detail as well. Most of
the stars hardly change their appearance for about 90% of their total lifetime.
This total lifetime depends on the mass; the more massive a star is, the less its
total lifetime will be. A star like the Sun will live for 10 billion years, the most
massive stars already die at an age of 10 million years.

Whenever a star dies, it stops shining and they therefore only contribute to
the light of the cluster during their life, most of which is in a very quiet phase,
without major changes. In the last 10% it is also known what the starlight does
(basically it gets brighter and very red (so called red giant stars)). The older the
cluster becomes the less stars contribute to their total light, with the maximum
stellar mass that is still in getting lower and lower. Clusters therefore get less
and less bright as they age. Moreover, less massive stars are redder, and so the
cluster gets redder and redder with the years.

A combination of the color of the cluster and the brightness gives you an
indication of the age and mass of the cluster. The color is not so much depene-
dent on the mass, so from the color you can determine its age. Knowing this
age and the brightness then gives you the clusters mass.

Problems in analyzing clusters

This all sounds easy and straightforward to do. There are, however, some serious
problems to solve. All these problems have to do with so-called degeneracies.
This basically means that several different processes have the same effect on
the light we receive from a cluster, and that is therefore hard to distinguish one
from the other. Clusters get redder and fainter when they age. If the light of a
cluster moves through a dusty cloud on its way here, it gets fainter and redder
(scattering of the light out of the line of sight is more important for blue light)
as well. The chance that the light moves through a cloud is not at all small:
clusters are born in the cold cores of clouds, so they are most likely embedded in
the remainders of their parental clouds. An extra side effect is that the original
composition of the stars in the cluster (which basically is the composition of
their outer layers, which are emitting the light you see) also affect their color.
So, whenever you don’t know the composition of the stars, and the amount of
extinction (light ‘absorption’ by clouds in between), it is very hard to determine



B.2. EVOLUTION OF STAR CLUSTERS 71

the age and mass of the cluster.
Several people in the world have come up with methods to make a difference

between the effects. The one being more succesful than the other, all methods
do need measurements of he brightness of the clusters through multiple filters,
in wavelengths ranging from the near UV to the near IR. Whenever these ob-
servations are not at hand, it is not possible to unravel extinction, mass, age
and metallicity reliably and one has to rely on other methods.

The luminosity function of a cluster population

One such methods is the luminosity function. Although it is not the easiest tool
to grasp, I will explain it here, because an important part of my research made
use of it.

A luminosity function is a so-called distribution function (those of the read-
ers, who do not know what that is and are not afraid of mathematics, may try
Appendix A). This means that for every value of a luminosity, the luminosity
function gives you a measure of the chance that a randomly chosen luminosity
has that particular value. Examples of luminosity functions (LFs) can be seen
in Fig. 6.1 through 6.4.

Models of star cluster populations, also called synthetic cluster populations,
can be created with the help of computers. These are models in which one
makes assumptions on the distributions of masses and ages of all clusters in
the population. The age and mass of a cluster together give their luminosity in
different passbands (filters). Putting all these luminosities together results in the
distribution of luminosities, i.e. the luminosity function. Changing parameters
in the original input (age and mass distribution) results in different LFs. Besides
observing an LF, one can adapt the input of the synthetic population, to model
the LF and compare observations and models.

One thing that can be found in this way is that, if there exists a physical
upper mass limit to star clusters, this will show up as a bend in the LF, like can
be seen in Fig. 6.1 through 6.4. The location of this bend tells you something
about the value of this maximum mass: the brighter it is, the more massive
clusters are.

B.2 Evolution of star clusters

Cluster are not at all steady objects. They are subject to the evolution of their
constituents stars and are in continuous dynamical evolution. In this section I
will explain why they evolve and how they evolve.

B.2.1 Cluster dynamics

Ignoring the first ten million years of their existence (which are complicated
and fall outside the scope of this thesis), stellar evolution is not very important
for the dynamics of star clusters. This nevertheless doesn’t mean that clusters
don’t evolve during the remaining time.

Stars in a cluster constantly attract each other gravitationally. It is therefore
necessary that they have sufficiently high speeds, in order not to collapse towards
the center (basically the same effect as the earth in its orbit around the sun: if
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it would move faster it would move away from the sun, whereas it would move
towards the sun if it went slower in its orbit). All stellar motions are more or
less random in the gravitational field of the cluster; they do not all move on
beautiful circular orbits around the center.

Isolated star clusters

Let’s first consider a star cluster that is on its own in the universe: no galaxy
where it moves in, no neighbouring clusters or any other massive objects like
giant clouds of gas and dust. In such a cluster, stars are solely under the
influence of the gravity of all other stars in the cluster. In principle a star
moves as a result of all the other attracting stars, without noticing that the net
force it experiences actually is the result of gravitional forces of all other stars.
Every now and then (quite often in a dense cluster), stars come rather close to
each other. In an interaction between two stars they tend to exchange energy
in such a way that their energies come closer to each other. In practice this will
mean that a massive star slows down, while the less massive star will speed up.
The slower star will sink to the center of the cluster, while the faster star is able
to move further out. If a star is in the outer parts of a cluster and gets another
‘kick’ it might move fast enough to leave the cluster forever (i.e. it moves with
a velocity bigger than the escape velocity), leaving the cluster behind with one
(not too massive) star less. The core, on the other hand, will get populated
with more and more (on average quite massive) stars with an ever increasing
concentration.

The cluster gets less and less massive due to the ‘evaporation’ of stars from
the outside. These stars are the stars that make up the field star population as
we observe it today. The core of the clusters is getting denser and denser. In
principle this will lead to the collapse of all of these stars onto each other, but
this is overcome by the formation of binary systems. Stars ‘capture’ each other,
which releases energy. That energy is used to let the core expand a bit again.
So a cluster on its own will, in due time, get a concentrated core and an ever
expanding (although slower and slower expanding) envelope.

This is not the only cluster disrupting process. The fact that cluster do
not live alone in the universe makes their dynamical evolution more interesting,
more complicated and faster (i.e. leading to total disruption in less time). All
other dynamic processes (which I will describe below) lead to so-called ‘heating’
of the cluster. This means that the stars get higher random velocities, in which
of course a part of the stars will get a velocity higher that the escape velocity,
and as such accelerate the evaporation of the system.

Tidal interaction

A first interaction mechanism is tidal in nature. If stars are in the outskirts
of the cluster, for example at the side of the center of the galaxy the cluster
belongs to, it might get in a region where the forces due the gravitational field of
the galaxy are stronger than the gravitational attraction of (all the other stars
in) the cluster. This star will move, now, under the main influence of the host
galaxy instead of the cluster. Because it is closer to the center of the galaxy
than the cluster is, it moves on an orbit with higher velocity, and therefore it
will speed up in front of the cluster. This star is lost. If the star, on the other
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hand, is at the back end of the cluster, it should (according to the gravitational
field of the galaxy) move on a slower orbit. So, if it is far enough from the
clusters center (in order to be more or less equally influenced by the cluster as
by the galaxy), it will lack behind and also be lost from the cluster. This effect
is clearly illustrated by the extreme example of Pal 5, Fig. 1.3.

Shocks

For clusters in a spiral galaxy, clusters can get shocked as well. If we are
concerned with a cluster on an orbit which moves through the disk twice in its
orbit, this is called disk shocking, whereas for cluster on an orbit in the disk of
the galaxy (usually the young clusters) it is called arm-shocking, because when
revolving around the galaxy center it will pass through spiral arms. Why are
clusters shocked at these locations? I will only describe it here in terms of arm
shocking (for most of our clusters are in the disk), but the same will hold for
clusters in the halo of a galaxy, when moving through the disk.

Coming in the vicinity of a spiral arm, which basicaly is just a region of
higher density, a cluster starts to experience a bit more gravitational attraction
towards this spiral arm. The front end of the cluster will notice this effect a bit
earlier than the rear end and will therefore be accelerated the first. This will
stretch the cluster. Once ‘inside’ the spiral arm the stars of the cluster will have
to make some effort to move out again, so then it decelerates, whereas the back
end of the cluster is still coming in at high speed. This squeezes the cluster a
bit. Moving out as a whole brings a cluster more or less back to its original
proportions (in size, not in mass). While being stretched and squeezed it may
have lost a considerable amount of stars, sometimes even up to 25%!

B.2.2 What do we want to know?

Although the outline of cluster evolution is more or less fixed, a lot of details are
still unknown. This thesis touches upon two of these details, with one common
factor. We will use observations of the disk galaxy M51, as can be seen in
Fig. 3.1 of which a composit is shown in Fig. 3.2, to touch upon the following
questions:

1. What is the distribution of radii of star clusters in M51? In particular: is
this distribution of radii different for different subsets, if we create these
subsets on a basis of position in the disk of the galaxy? For these different
subsets one can think of:

(a) Close to the center of the galaxy or further to the outskirts

(b) Inside the spiral arms or in between the spiral arms

2. What is the distribution of luminosities? This distribution is also called
the luminosity function. Here, the same subsets are created as men-
tioned with respect to the radii.

In the rest of this summary I will describe the results, without going into
the details of data reduction.
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B.3 Radii of star clusters in M51

B.3.1 Observations

In order to measure the radii, first all the clusters have to be identified on the
image. Point sources are selected and a dedicated software package is used
to measure the size of the object. It turned out that obtaining reliable size
determinations were not that easily extracted from the image. Conclusions on
the distribution of radii are as yet not 100% definitive. General statements
on the distribution are not expected to be very much off, but the details may
change in due time.

B.3.2 Results

The distribution of radii can be seen in Fig. 5.1. The horizontal axis in this case
is logarithmic, with the tickmarks indicating the normal, linear, scale in steps
of 1 parsec (= pc, =3.26 lightyears, =3·1018 cm). The shape of the distribution
is somewhat unusual. The part right of the peak looks pretty much like shapes
people found before. Left of the peak is a part which previous extragalactic
studies couldn’t reach, because the resolution was insufficient.

The distribution is peaked at around 3 pc. This seems to be a sort of
preferred radius. Also in other galaxies, like our own Milky Way Galaxy, radius
distributions are peaked around more or less this value.

The question whether or not this distribution depends on galactocentric
distance is adressed in Fig. 5.2. Here the red squares are the mean radius at that
particular, indicated distance. The dashed line is a fit through the data points.
The solid lines is the line which fits the radii of the old, globular cluster system
of our Milky Way system. The dashed-dotted line is the line that describes an
equilibrium between the star cluster and the tidal field of the galaxy: If star
clusters have a radius such that it is just not being torn apart by the tidal forces
of the galaxy, then the radii are increasing according to that line for clusters
further out.

The two lines, of which one corresponds to a largely young population (our
M51 clusters) and one to an old cluster population (the globular clusters), might
indicate a very slow evolution towards tidal equilibrium. The young system is
‘born’ with more or less random radii (with a distribution peaked at around 3
pc), and they are evolving towards an equilibrium. The old system is therefore
already much closer to this equilibrium, but still not quite there.

A relation with background intensity (so basically being in- or outside a
spiral arm) is not found.

B.4 Luminosities of star clusters in M51

B.4.1 Observations

In order to say something about the luminosity of clusters we have to select
point sources that are really clusters (so to remove the stars that are in the
image from the list of point sources) and to measure the amount of light that
comes from them. This amount of light has to be corrected for absorption along
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the way (it moves through clouds of gas and dust) to know the intrinsic amount
of light emitted, i.e. the luminosity.

B.4.2 Results

Once this is done, we can create the luminosity function. In the three different
filters they look like Fig. 6.1 through 6.3 in the upper panels. On the horizontal
axis you see the absolute magnitude, which is an astronomical measure of the
amount of light they emit. Left means dim, right means bright, and a shift of a
certain number in magnitudes corresponds to a factor difference in luminosity
(so it is a logarithmic scale as well): 5 magnitudes brighter means a factor 100
brighter.

The most important result is the fact that we significantly detect a bend in
this function, indicated by the vertical dashed line. As mentioned before this
means that there is a physical upper mass limit for star clusters in M51. We
detect the bend in all three filters, so that strengthens the claim.

B.4.3 Maximum mass at different loci

The lower panels of the LF plots show the luminosity functions of several subsets
of the population, with their galactocentric distance as parameter. The upper of
the three is the population closest to the center, going further out for the lower
plots. We can see here that the bend occurs at brighter magnitudes, closer
to the center of the galaxy, indicating that the mass truncation lies at higher
masses in the center of the galaxy.

In Fig. 6.4 the luminosity function is shown as a function of ‘region’. High
and low background regions are selected, as shown in Fig. 4.1. The interme-
diate region is discarded, because there were too little clusters to have reliable
statistics; it is only used as a clear distinction between the other two regions.
From this LF it is clear that there is some sort of a difference in bend location,
although it is less significant than in the case of the galactocentric distance
requirement.

B.4.4 Cluster disruption

From the slope of the faint (i.e. left) side of the LF we can also say something
about the rate at which clusters are destroyed. This slopes results from the
distribution of initial masses of the clusters and from the disruption of the
clusters in due time. A shallower slope means faster disruption. We can conclude
therefore that cluster are faster disrupted in the center of the galaxy and in
regions of higher background intensity.

In summary, the results of an investigation of relations between LF param-
eters and location are:

1. The bend in the LF occurs at brighter magnitudes, closer to the center of
the galaxy

2. The location of the bend in the LF is largely independent of background
intensity

3. The slope of the faint end side of the LF is shallower, closer to the center
of the galaxy
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4. The slope of the faint end side of the LF is shallower in high background
regions

B.5 Conclusions and outlook

The radius distribution seems to be peaked at a value of around 3 pc, decreasing
fast towards larger as well as smaller radii. Any relation between mean radius
and postion in the galactic disk is not found, implying that the comparatively
young cluster population is not (yet) in tidal equilibrium with their host galaxy
(old globular clusters in our Milky Way halo are much closer to this equilibrium).

Using the LF of the star cluster population of M51 we show that the cluster
initial mass function is likely to be truncated at the high mass end. We also show
that the maximum possible cluster mass in the central regions of the galaxy is
higher than in the outskirts. Regions of higher background intensity also tend
to form more massive clusters.

Slopes of the luminosity function indicate a more efficient cluster disruption
process in the inner parts of the galaxy than in the outer parts, and more efficient
disruption in high background regions than in regions with lower background
intensity.

Of course the work is not done here. Although being a step further in un-
derstanding the formation and evolutionary processes that a star cluster goes
through, lots of questions are still unanswered, or only partially answered. For
example the question of the maximum mass: why is it there? In which other
galaxies can we see it? How do these other galaxies compare to M51? Are there
galactic systems (like e.g. merging galaxies) where such an upper mass limit
does not exist? What about the old systems, which were formed under very
different circumstances than the young system we observed? And many, many
more...

Also in the area of cluster radii a lot of work is still to be done. Not only
will observations learn us more about the complicated dynamical evolution of
many stars, also simulations will grow more and more realistic in due time. The
final words are not yet spoken.
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